LISAC: Learned Coded Waveform Design for ISAC with OFDM

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 14, 2024), p. n/a
Autor principal: Bian, Chenghong
Otros Autores: Zhang, Yumeng, Gunduz, Deniz
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3116745012
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3116745012 
045 0 |b d20241014 
100 1 |a Bian, Chenghong 
245 1 |a LISAC: Learned Coded Waveform Design for ISAC with OFDM 
260 |b Cornell University Library, arXiv.org  |c Oct 14, 2024 
513 |a Working Paper 
520 3 |a We propose a novel deep learning based method to design a coded waveform for integrated sensing and communication (ISAC) system based on orthogonal frequency-division multiplexing (OFDM). Our ultimate goal is to design a coded waveform, which is capable of providing satisfactory sensing performance of the target while maintaining high communication quality measured in terms of the bit error rate (BER). The proposed LISAC provides an improved waveform design with the assistance of deep neural networks for the encoding and decoding of the information bits. In particular, the transmitter, parameterized by a recurrent neural network (RNN), encodes the input bit sequence into the transmitted waveform for both sensing and communications. The receiver employs a RNN-based decoder to decode the information bits while the transmitter senses the target via maximum likelihood detection. We optimize the system considering both the communication and sensing performance. Simulation results show that the proposed LISAC waveform achieves a better trade-off curve compared to existing alternatives. 
653 |a Recurrent neural networks 
653 |a Waveforms 
653 |a Bit error rate 
653 |a Error analysis 
653 |a Decoding 
653 |a Machine learning 
653 |a Maximum likelihood decoding 
653 |a Communication 
653 |a Orthogonal Frequency Division Multiplexing 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Target detection 
700 1 |a Zhang, Yumeng 
700 1 |a Gunduz, Deniz 
773 0 |t arXiv.org  |g (Oct 14, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3116745012/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.10711