Image Deraining with Frequency-Enhanced State Space Model

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Dec 8, 2024), p. n/a
Príomhchruthaitheoir: Yamashita, Shugo
Rannpháirtithe: Ikehara, Masaaki
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3116757434
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3116757434 
045 0 |b d20241208 
100 1 |a Yamashita, Shugo 
245 1 |a Image Deraining with Frequency-Enhanced State Space Model 
260 |b Cornell University Library, arXiv.org  |c Dec 8, 2024 
513 |a Working Paper 
520 3 |a Removing rain degradations in images is recognized as a significant issue. In this field, deep learning-based approaches, such as Convolutional Neural Networks (CNNs) and Transformers, have succeeded. Recently, State Space Models (SSMs) have exhibited superior performance across various tasks in both natural language processing and image processing due to their ability to model long-range dependencies. This study introduces SSM to image deraining with deraining-specific enhancements and proposes a Deraining Frequency-Enhanced State Space Model (DFSSM). To effectively remove rain streaks, which produce high-intensity frequency components in specific directions, we employ frequency domain processing concurrently with SSM. Additionally, we develop a novel mixed-scale gated-convolutional block, which uses convolutions with multiple kernel sizes to capture various scale degradations effectively and integrates a gating mechanism to manage the flow of information. Finally, experiments on synthetic and real-world rainy image datasets show that our method surpasses state-of-the-art methods. Code is available at https://github.com/ShugoYamashita/DFSSM. 
653 |a Image degradation 
653 |a Rain 
653 |a Machine learning 
653 |a Image enhancement 
653 |a Information management 
653 |a Natural language processing 
653 |a Information flow 
653 |a Image processing 
653 |a Artificial neural networks 
653 |a State space models 
700 1 |a Ikehara, Masaaki 
773 0 |t arXiv.org  |g (Dec 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3116757434/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.16470