POPoS: Improving Efficient and Robust Facial Landmark Detection with Parallel Optimal Position Search

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Dec 20, 2024), p. n/a
المؤلف الرئيسي: Chong-Yang, Xiang
مؤلفون آخرون: Jun-Yan, He, Zhi-Qi, Cheng, Wu, Xiao, Xian-Sheng Hua
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Achieving a balance between accuracy and efficiency is a critical challenge in facial landmark detection (FLD). This paper introduces Parallel Optimal Position Search (POPoS), a high-precision encoding-decoding framework designed to address the limitations of traditional FLD methods. POPoS employs three key contributions: (1) Pseudo-range multilateration is utilized to correct heatmap errors, improving landmark localization accuracy. By integrating multiple anchor points, it reduces the impact of individual heatmap inaccuracies, leading to robust overall positioning. (2) To enhance the pseudo-range accuracy of selected anchor points, a new loss function, named multilateration anchor loss, is proposed. This loss function enhances the accuracy of the distance map, mitigates the risk of local optima, and ensures optimal solutions. (3) A single-step parallel computation algorithm is introduced, boosting computational efficiency and reducing processing time. Extensive evaluations across five benchmark datasets demonstrate that POPoS consistently outperforms existing methods, particularly excelling in low-resolution heatmaps scenarios with minimal computational overhead. These advantages make POPoS a highly efficient and accurate tool for FLD, with broad applicability in real-world scenarios.
تدمد:2331-8422
المصدر:Engineering Database