Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study

Guardado en:
Detalles Bibliográficos
Publicado en:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences vol. X-4-2024 (2024), p. 107
Autor principal: Dorozynski, Mareike
Otros Autores: Rottensteiner, Franz, Thiemann, Frank, Sester, Monika, Dahms, Thorsten, Hovenbitzer, Michael
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3117992301
003 UK-CbPIL
022 |a 2194-9042 
022 |a 2194-9050 
024 7 |a 10.5194/isprs-annals-X-4-2024-107-2024  |2 doi 
035 |a 3117992301 
045 2 |b d20240101  |b d20241231 
084 |a 263032  |2 nlm 
100 1 |a Dorozynski, Mareike  |u Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany; Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany 
245 1 |a Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study 
260 |b Copernicus GmbH  |c 2024 
513 |a Journal Article 
520 3 |a Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained, utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multimodal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier. 
653 |a Digital mapping 
653 |a Comparative studies 
653 |a Qualitative analysis 
653 |a Digital imaging 
653 |a Classification 
653 |a Computer aided mapping 
653 |a Information systems 
653 |a Image segmentation 
653 |a Environmental monitoring 
653 |a Topography 
653 |a Vegetation 
653 |a Topographic maps 
653 |a Digital computers 
653 |a Monitoring 
653 |a Machine learning 
653 |a Land cover 
653 |a Topographic mapping 
653 |a Environmental 
700 1 |a Rottensteiner, Franz  |u Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany; Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany 
700 1 |a Thiemann, Frank  |u Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany; Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany 
700 1 |a Sester, Monika  |u Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany; Institute of Cartography and Geoinformatics, Leibniz Universität Hannover, Germany 
700 1 |a Dahms, Thorsten  |u Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany; Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany 
700 1 |a Hovenbitzer, Michael  |u Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany; Federal Agency for Cartography and Geodesy, Frankfurt am Main, Germany 
773 0 |t ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences  |g vol. X-4-2024 (2024), p. 107 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3117992301/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3117992301/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch