Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 16, 2024), p. n/a
Autor Principal: Krishna, Rahul
Outros autores: Pan, Rangeet, Pavuluri, Raju, Tamilselvam, Srikanth, Vukovic, Maja, Sinha, Saurabh
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3118116875
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3118116875 
045 0 |b d20241016 
100 1 |a Krishna, Rahul 
245 1 |a Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights 
260 |b Cornell University Library, arXiv.org  |c Oct 16, 2024 
513 |a Working Paper 
520 3 |a Large Language Models for Code (or code LLMs) are increasingly gaining popularity and capabilities, offering a wide array of functionalities such as code completion, code generation, code summarization, test generation, code translation, and more. To leverage code LLMs to their full potential, developers must provide code-specific contextual information to the models. These are typically derived and distilled using program analysis tools. However, there exists a significant gap--these static analysis tools are often language-specific and come with a steep learning curve, making their effective use challenging. These tools are tailored to specific program languages, requiring developers to learn and manage multiple tools to cover various aspects of the their code base. Moreover, the complexity of configuring and integrating these tools into the existing development environments add an additional layer of difficulty. This challenge limits the potential benefits that could be gained from more widespread and effective use of static analysis in conjunction with LLMs. To address this challenge, we present codellm-devkit (hereafter, `CLDK'), an open-source library that significantly simplifies the process of performing program analysis at various levels of granularity for different programming languages to support code LLM use cases. As a Python library, CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs. With this library, developers can effortlessly integrate detailed, code-specific insights that enhance the operational efficiency and effectiveness of LLMs in coding tasks. CLDK is available as an open-source library at https://github.com/IBM/codellm-devkit. 
653 |a Learning curves 
653 |a Python 
653 |a Program verification (computers) 
653 |a Source code 
653 |a Static code analysis 
653 |a Large language models 
653 |a Libraries 
653 |a Open source software 
653 |a Programming languages 
653 |a Effectiveness 
700 1 |a Pan, Rangeet 
700 1 |a Pavuluri, Raju 
700 1 |a Tamilselvam, Srikanth 
700 1 |a Vukovic, Maja 
700 1 |a Sinha, Saurabh 
773 0 |t arXiv.org  |g (Oct 16, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3118116875/abstract/embedded/BH75TPHOCCPB476R?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.13007