Joint Space-Time Adaptive Processing and Beamforming Design for Cell-Free ISAC Systems
Guardat en:
| Publicat a: | arXiv.org (Oct 18, 2024), p. n/a |
|---|---|
| Autor principal: | |
| Altres autors: | , |
| Publicat: |
Cornell University Library, arXiv.org
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full text outside of ProQuest |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | In this paper, we explore cooperative sensing and communication within cell-free integrated sensing and communication (ISAC) systems. Specifically, multiple transmit access points (APs) collaboratively serve multiple communication users while simultaneously illuminating a potential target, with a separate sensing AP dedicated to collecting echo signals for target detection. To improve the performance of identifying a moving target in the presence of strong interference originating from transmit APs, we employ the space-time adaptive processing (STAP) technique and jointly optimize the transmit/receive beamforming. Our goal is to maximize the radar output signal-to-interference-plus-noise ratio (SINR), subject to the communication SINR requirements and the power budget. An efficient alternating algorithm is developed to solve the resulting non-convex optimization problem. Simulations demonstrate significant performance improvements in target detection and validate the advantages of the proposed joint STAP and beamforming design for cell-free ISAC systems. |
|---|---|
| ISSN: | 2331-8422 |
| Font: | Engineering Database |