Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques

Saved in:
Bibliographic Details
Published in:arXiv.org (Oct 18, 2024), p. n/a
Main Author: Yugandhar Reddy Gogireddy
Other Authors: Jithendra Reddy Gogireddy
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3118927223
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3118927223 
045 0 |b d20241018 
100 1 |a Yugandhar Reddy Gogireddy 
245 1 |a Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques 
260 |b Cornell University Library, arXiv.org  |c Oct 18, 2024 
513 |a Working Paper 
520 3 |a The difficulties of underwater image degradation due to light scattering, absorption, and fog-like particles which lead to low resolution and poor visibility are discussed in this study report. We suggest a sophisticated hybrid strategy that combines Multi-Scale Retinex (MSR) defogging methods with Super-Resolution Convolutional Neural Networks (SRCNN) to address these problems. The Retinex algorithm mimics human visual perception to reduce uneven lighting and fogging, while the SRCNN component improves the spatial resolution of underwater photos.Through the combination of these methods, we are able to enhance the clarity, contrast, and colour restoration of underwater images, offering a reliable way to improve image quality in difficult underwater conditions. The research conducts extensive experiments on real-world underwater datasets to further illustrate the efficacy of the suggested approach. In terms of sharpness, visibility, and feature retention, quantitative evaluation which use metrics like the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR) demonstrates notable advances over conventional techniques.In real-time underwater applications like marine exploration, underwater robotics, and autonomous underwater vehicles, where clear and high-resolution imaging is crucial for operational success, the combination of deep learning and conventional image processing techniques offers a computationally efficient framework with superior results. 
653 |a Robotics 
653 |a Autonomous underwater vehicles 
653 |a Photodegradation 
653 |a Image resolution 
653 |a Visual perception 
653 |a Image enhancement 
653 |a Spatial resolution 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Underwater robots 
653 |a Visibility 
653 |a Image degradation 
653 |a Retinex (algorithm) 
653 |a Image quality 
653 |a Machine learning 
653 |a Real time 
653 |a Image processing 
653 |a Visual perception driven algorithms 
653 |a Image contrast 
653 |a Fogging 
653 |a Signal to noise ratio 
700 1 |a Jithendra Reddy Gogireddy 
773 0 |t arXiv.org  |g (Oct 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3118927223/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.14285