Mathematical modelling to inform outbreak response vaccination

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Oct 17, 2024), p. n/a
Hovedforfatter: Shankar, Manjari
Andre forfattere: Hartner, Anna-Maria, Arnold, Callum R K, Gayawan, Ezra, Kang, Hyolim, Jong-Hoon, Kim, Gilani, Gemma Nedjati, Cori, Anne, Fu, Han, Jit, Mark, Muloiwa, Rudzani, Portnoy, Allison, Trotter, Caroline, Gaythorpe, Katy A M
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3118928809
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3118928809 
045 0 |b d20241017 
100 1 |a Shankar, Manjari 
245 1 |a Mathematical modelling to inform outbreak response vaccination 
260 |b Cornell University Library, arXiv.org  |c Oct 17, 2024 
513 |a Working Paper 
520 3 |a Mathematical models are established tools to assist in outbreak response. They help characterise complex patterns in disease spread, simulate control options to assist public health authorities in decision-making, and longer-term operational and financial planning. In the context of vaccine-preventable diseases (VPDs), vaccines are one of the most-cost effective outbreak response interventions, with the potential to avert significant morbidity and mortality through timely delivery. Models can contribute to the design of vaccine response by investigating the importance of timeliness, identifying high-risk areas, prioritising the use of limited vaccine supply, highlighting surveillance gaps and reporting, and determining the short- and long-term benefits. In this review, we examine how models have been used to inform vaccine response for 10 VPDs, and provide additional insights into the challenges of outbreak response modelling, such as data gaps, key vaccine-specific considerations, and communication between modellers and stakeholders. We illustrate that while models are key to policy-oriented outbreak vaccine response, they can only be as good as the surveillance data that inform them. 
653 |a Vaccines 
653 |a Outbreaks 
653 |a Surveillance 
653 |a Financial planning 
653 |a Public health 
700 1 |a Hartner, Anna-Maria 
700 1 |a Arnold, Callum R K 
700 1 |a Gayawan, Ezra 
700 1 |a Kang, Hyolim 
700 1 |a Jong-Hoon, Kim 
700 1 |a Gilani, Gemma Nedjati 
700 1 |a Cori, Anne 
700 1 |a Fu, Han 
700 1 |a Jit, Mark 
700 1 |a Muloiwa, Rudzani 
700 1 |a Portnoy, Allison 
700 1 |a Trotter, Caroline 
700 1 |a Gaythorpe, Katy A M 
773 0 |t arXiv.org  |g (Oct 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3118928809/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.13923