HPVM-HDC: A Heterogeneous Programming System for Accelerating Hyperdimensional Computing

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:arXiv.org (Dec 2, 2024), p. n/a
Prif Awdur: Arbore, Russel
Awduron Eraill: Routh, Xavier, Noor, Abdul Rafae, Kothari, Akash, Yang, Haichao, Xu, Weihong, Pinge, Sumukh, Adve, Vikram, Rosing, Tajana, Zhou, Minxuan
Cyhoeddwyd:
Cornell University Library, arXiv.org
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full text outside of ProQuest
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3119286628
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3119286628 
045 0 |b d20241202 
100 1 |a Arbore, Russel 
245 1 |a HPVM-HDC: A Heterogeneous Programming System for Accelerating Hyperdimensional Computing 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a Hyperdimensional Computing (HDC), a technique inspired by cognitive models of computation, has been proposed as an efficient and robust alternative basis for machine learning. HDC programs are often manually written in low-level and target specific languages targeting CPUs, GPUs, and FPGAs - these codes cannot be easily retargeted onto HDC-specific accelerators. No previous programming system enables productive development of HDC programs and generates efficient code for several hardware targets. We propose a heterogeneous programming system for HDC: a novel programming language, HDC++, for writing applications using a unified programming model, including HDC-specific primitives to improve programmability, and a heterogeneous compiler, HPVM-HDC, that provides an intermediate representation for compiling HDC programs to many hardware targets. We implement two tuning optimizations, automatic binarization and reduction perforation, that exploit the error resilient nature of HDC. Our evaluation shows that HPVM-HDC generates performance-competitive code for CPUs and GPUs, achieving a geomean speed-up of 1.17x over optimized baseline CUDA implementations with a geomean reduction in total lines of code of 1.6x across CPUs and GPUs. Additionally, HPVM-HDC targets an HDC Digital ASIC and an HDC ReRAM accelerator simulator, enabling the first execution of HDC applications on these devices. 
653 |a Algorithms 
653 |a Computation 
653 |a Machine learning 
653 |a Hardware 
653 |a Graphics processing units 
653 |a Application specific integrated circuits 
653 |a Programming languages 
700 1 |a Routh, Xavier 
700 1 |a Noor, Abdul Rafae 
700 1 |a Kothari, Akash 
700 1 |a Yang, Haichao 
700 1 |a Xu, Weihong 
700 1 |a Pinge, Sumukh 
700 1 |a Adve, Vikram 
700 1 |a Rosing, Tajana 
700 1 |a Zhou, Minxuan 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3119286628/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.15179