Assessing Quantum Extreme Learning Machines for Software Testing in Practice

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:arXiv.org (Dec 23, 2024), p. n/a
Hoofdauteur: Asmar Muqeet
Andere auteurs: Hassan Sartaj, Arrieta, Aitor, Ali, Shaukat, Arcaini, Paolo, Arratibel, Maite, Gjøby, Julie Marie, Narasimha Raghavan Veeraragavan, Nygård, Jan F
Gepubliceerd in:
Cornell University Library, arXiv.org
Onderwerpen:
Online toegang:Citation/Abstract
Full text outside of ProQuest
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3119340243
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3119340243 
045 0 |b d20241223 
100 1 |a Asmar Muqeet 
245 1 |a Assessing Quantum Extreme Learning Machines for Software Testing in Practice 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Machine learning has been extensively applied for various classical software testing activities such as test generation, minimization, and prioritization. Along the same lines, recently, there has been interest in applying quantum machine learning to software testing. For example, Quantum Extreme Learning Machines (QELMs) were recently applied for testing classical software of industrial elevators. However, most studies on QELMs, whether in software testing or other areas, used ideal quantum simulators that fail to account for the noise in current quantum computers. While ideal simulations offer insight into QELM's theoretical capabilities, they do not enable studying their performance on current noisy quantum computers. To this end, we study how quantum noise affects QELM in three industrial and real-world classical software testing case studies, providing insights into QELMs' robustness to noise. Such insights assess QELMs potential as a viable solution for industrial software testing problems in today's noisy quantum computing. Our results show that QELMs are significantly affected by quantum noise, with a performance drop of 250% in regression tasks and 50% in classification tasks. Although introducing noise during both ML training and testing phases can improve results, the reduction is insufficient for practical applications. While error mitigation techniques can enhance noise resilience, achieving an average 3.0% performance drop in classification, but their effectiveness varies by context, highlighting the need for QELM-tailored error mitigation strategies. 
653 |a Machine learning 
653 |a Quantum computing 
653 |a Software 
653 |a Simulators 
653 |a Error reduction 
653 |a Classification 
653 |a Quantum computers 
653 |a Software testing 
700 1 |a Hassan Sartaj 
700 1 |a Arrieta, Aitor 
700 1 |a Ali, Shaukat 
700 1 |a Arcaini, Paolo 
700 1 |a Arratibel, Maite 
700 1 |a Gjøby, Julie Marie 
700 1 |a Narasimha Raghavan Veeraragavan 
700 1 |a Nygård, Jan F 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3119340243/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.15494