The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 11, 2024), p. n/a
Hovedforfatter: Gaches, Brandt A L
Andre forfattere: Tan, Jonathan C, Rosen, Anna L, Kuiper, Rolf
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3119340693
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1051/0004-6361/202451842  |2 doi 
035 |a 3119340693 
045 0 |b d20241211 
100 1 |a Gaches, Brandt A L 
245 1 |a The High-resolution Accretion Disks of Embedded protoStars (HADES) simulations. I. Impact of Protostellar Magnetic Fields on the Accretion Modes 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a How embedded, actively accreting low-mass protostars accrete their mass is still greatly debated. Observations are now piecing together the puzzle of embedded protostellar accretion, in particular with new facilities in the near-infrared. However, high-resolution theoretical models are still lacking, with a stark paucity of detailed simulations of these early phases. Here we present high-resolution non-ideal magneto-hydrodynamic simulations of a Solar mass protostar accreting at rates exceeding 10\(^{-6} M_{\odot}\) yr\(^{-1}\). We show the results of the accretion flow for four different protostellar magnetic fields, 10 G, 500 G, 1 kG, and 2 kG, combined with a disk magnetic field. For weaker (10 G and 500 G) protostar magnetic fields, accretion occurs via a turbulent boundary layer mode, with disk material impacting across the protostellar surface. In the 500 G model, the presence of a magnetically dominated outflow focuses the accretion towards the equator, slightly enhancing and ordering the accretion. For kG magnetic fields, the disk becomes truncated due to the protostellar dipole and exhibits magnetospheric accretion, with the 2 kG model having accretion bursts induced by the interchange instability. We present bolometric light curves for the models and find that they reproduce observations of Class I protostars from YSOVAR, with high bursts followed by an exponential decay possibly being a signature of instability-driven accretion. Finally, we present the filling fractions of accretion and find that 90\% of the mass is accreted in a surface area fraction of 10-20\%. These simulations will be extended in future work for a broader parameter space, with their high resolution and high temporal spacing able to explore a wide range of interesting protostellar physics. 
653 |a Magnetic fields 
653 |a Simulation 
653 |a Accretion disks 
653 |a Magnetohydrodynamic simulation 
653 |a Protostars 
653 |a Bursts 
653 |a Dipoles 
653 |a Turbulent boundary layer 
653 |a Magnetospheres 
653 |a Light curve 
653 |a High resolution 
700 1 |a Tan, Jonathan C 
700 1 |a Rosen, Anna L 
700 1 |a Kuiper, Rolf 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3119340693/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.14777