Blast Resistance of Retrofitted Unreinforced Masonry Arch Bridge with Reinforced Concrete Pavement and Infill Replacement

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Transportation Infrastructure Geotechnology vol. 11, no. 6 (Dec 2024), p. 4316
मुख्य लेखक: BAGHERZADEH AZAR, Amin
अन्य लेखक: SARI, Ali
प्रकाशित:
Springer Nature B.V.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3120252000
003 UK-CbPIL
022 |a 2196-7202 
022 |a 2196-7210 
024 7 |a 10.1007/s40515-024-00451-1  |2 doi 
035 |a 3120252000 
045 2 |b d20241201  |b d20241231 
084 |a 242033  |2 nlm 
100 1 |a BAGHERZADEH AZAR, Amin  |u Istanbul Technical University, ITU Ayazaga Campus, Institute of Earthquake Engineering and Disaster Management, Maslak, Istanbul, Turkey (GRID:grid.10516.33) (ISNI:0000 0001 2174 543X) 
245 1 |a Blast Resistance of Retrofitted Unreinforced Masonry Arch Bridge with Reinforced Concrete Pavement and Infill Replacement 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a This study investigated the impact of blast loads on the structural integrity of masonry arch bridges and proposed two reinforcement methods to enhance the resilience of the bridge under consideration. A detailed micro-model was developed utilizing finite element software based on data obtained from FARO laser scanning. Various material models including Johnson-Holmquist II (JH-II), Mohr–Coulomb, Johnson–Cook, and Concrete Damage Plasticity were utilized to characterize the properties of masonry units, backfill, steel rebars, and concrete. The Jones-Wilkins-Lee equation of state was employed to simulate the characteristics of trinitrotoluene. Following the JH-II model theory, the authors developed a VUMAT code. Explosive charges ranging from 100 to 500 kg were located above and below the bridge deck. The findings indicated that TNT charges below 100 kg placed above the deck caused minor damage to the bridge without compromising its stability. Conversely, charges exceeding 500 kg had a notable effect on the structural integrity of the bridge. Moreover, explosions occurring beneath the deck had a more severe effect on the bridge compared to those above the deck. Furthermore, the implementation of reinforcement techniques mitigates component damage and prevents the potential structural failure of the span and/or bridge. 
653 |a Damage prevention 
653 |a Structure reinforcement 
653 |a Finite element method 
653 |a Reinforcing steels 
653 |a Arch bridges 
653 |a Bridge failure 
653 |a Concrete 
653 |a Explosions 
653 |a Blast loads 
653 |a Concrete pavements 
653 |a Bridge decks 
653 |a Trinitrotoluene 
653 |a Reinforced concrete 
653 |a Structural failure 
653 |a Computer program integrity 
653 |a Equations of state 
653 |a Redevelopment 
653 |a Masonry 
653 |a Load resistance 
653 |a Structural integrity 
653 |a Mohr-Coulomb theory 
653 |a Blast resistance 
653 |a Retrofitting 
653 |a Impact resistance 
653 |a Mathematical models 
653 |a Environmental 
700 1 |a SARI, Ali  |u Istanbul Technical University, ITU Ayazaga Campus, Faculty of Civil Engineering, Maslak, Istanbul, Turkey (GRID:grid.10516.33) (ISNI:0000 0001 2174 543X) 
773 0 |t Transportation Infrastructure Geotechnology  |g vol. 11, no. 6 (Dec 2024), p. 4316 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3120252000/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3120252000/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch