Python workflow for segmenting multiphase flow in porous rocks

Saved in:
Bibliographic Details
Published in:arXiv.org (Dec 6, 2024), p. n/a
Main Author: Spurin, Catherine
Other Authors: Ellman, Sharon, Sherburn, Dane, Bultreys, Tom, Tchelepi, Hamdi A
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3120692386
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1007/s11242-024-02136-2  |2 doi 
035 |a 3120692386 
045 0 |b d20241206 
100 1 |a Spurin, Catherine 
245 1 |a Python workflow for segmenting multiphase flow in porous rocks 
260 |b Cornell University Library, arXiv.org  |c Dec 6, 2024 
513 |a Working Paper 
520 3 |a X-ray micro-computed tomography (X-ray micro-CT) is widely employed to investigate flow phenomena in porous media, providing a powerful alternative to core-scale experiments for estimating traditional petrophysical properties such as porosity, single-phase permeability or fluid connectivity. However, the segmentation process, critical for deriving these properties from greyscale images, varies significantly between studies due to the absence of a standardized workflow or any ground truth data. This introduces challenges in comparing results across different studies, especially for properties sensitive to segmentation. To address this, we present a fully open-source, automated workflow for the segmentation of a Bentheimer sandstone filled with nitrogen and brine. The workflow incorporates a traditional image processing pipeline, including non-local means filtering, image registration, watershed segmentation of grains, and a combination of differential imaging and thresholding for segmentation of the fluid phases. Our workflow enhances reproducibility by enabling other research groups to easily replicate and validate findings, fostering consistency in petrophysical property estimation. Moreover, its modular structure facilitates integration into modeling frameworks, allowing for forward-backward communication and parameter sensitivity analyses. We apply the workflow to exploring the sensitivity of the non-wetting phase volume, surface area, and connectivity to image processing. This adaptable tool paves the way for future advancements in X-ray micro-CT analysis of porous media. 
653 |a Porous media 
653 |a Image segmentation 
653 |a Sensitivity analysis 
653 |a Image registration 
653 |a Parameter sensitivity 
653 |a Image filters 
653 |a Computed tomography 
653 |a Multiphase flow 
653 |a Medical imaging 
653 |a Workflow 
653 |a Sandstone 
653 |a Modular structures 
653 |a Image processing 
653 |a Estimation 
700 1 |a Ellman, Sharon 
700 1 |a Sherburn, Dane 
700 1 |a Bultreys, Tom 
700 1 |a Tchelepi, Hamdi A 
773 0 |t arXiv.org  |g (Dec 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3120692386/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.18937