HardRace: A Dynamic Data Race Monitor for Production Use

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 19, 2024), p. n/a
Hlavní autor: Sun, Xudong
Další autoři: Chen, Zhuo, Shi, Jingyang, Zhang, Yiyu, Peng, Di, Zhao, Jianhua, Li, Xuandong, Zuo, Zhiqiang
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3120693466
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3120693466 
045 0 |b d20241219 
100 1 |a Sun, Xudong 
245 1 |a HardRace: A Dynamic Data Race Monitor for Production Use 
260 |b Cornell University Library, arXiv.org  |c Dec 19, 2024 
513 |a Working Paper 
520 3 |a Data races are critical issues in multithreaded program, leading to unpredictable, catastrophic and difficult-to-diagnose problems. Despite the extensive in-house testing, data races often escape to deployed software and manifest in production runs. Existing approaches suffer from either prohibitively high runtime overhead or incomplete detection capability. In this paper, we introduce HardRace, a data race monitor to detect races on-the-fly while with sufficiently low runtime overhead and high detection capability. HardRace firstly employs sound static analysis to determine a minimal set of essential memory accesses relevant to data races. It then leverages hardware trace instruction, i.e., Intel PTWRITE, to selectively record only these memory accesses and thread synchronization events during execution with negligible runtime overhead. Given the tracing data, HardRace performs standard data race detection algorithms to timely report potential races occurred in production runs. The experimental evaluations show that HardRace outperforms state-of-the-art tools like ProRace and Kard in terms of both runtime overhead and detection capability -- HardRace can detect all kinds of data races in read-world applications while maintaining a negligible overhead, less than 2% on average. 
653 |a Algorithms 
653 |a Synchronism 
653 |a Standard data 
653 |a Static code analysis 
653 |a Run time (computers) 
700 1 |a Chen, Zhuo 
700 1 |a Shi, Jingyang 
700 1 |a Zhang, Yiyu 
700 1 |a Peng, Di 
700 1 |a Zhao, Jianhua 
700 1 |a Li, Xuandong 
700 1 |a Zuo, Zhiqiang 
773 0 |t arXiv.org  |g (Dec 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3120693466/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.18412