Energy-based, geometric, and compositional formulation of fluid and plasma models

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:arXiv.org (Dec 6, 2024), p. n/a
Κύριος συγγραφέας: Lohmayer, Markus
Άλλοι συγγραφείς: Kraus, Michael, Leyendecker, Sigrid
Έκδοση:
Cornell University Library, arXiv.org
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full text outside of ProQuest
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3120694906
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3120694906 
045 0 |b d20241206 
100 1 |a Lohmayer, Markus 
245 1 |a Energy-based, geometric, and compositional formulation of fluid and plasma models 
260 |b Cornell University Library, arXiv.org  |c Dec 6, 2024 
513 |a Working Paper 
520 3 |a Fluid dynamics plays a crucial role in various multiphysics applications, including energy systems, electronics cooling, and biomedical engineering. Developing models for complex coupled systems can be challenging and time-consuming. In particular, ensuring the consistent integration of models from diverse physical domains requires meticulous attention. Considering the example of (electro-)magneto hydrodynamics (on a fixed spatial domain and with linear polarization and magnetization), this article demonstrates how relatively complex models can be composed from simpler parts by means of a formal language for multiphysics modeling. The Exergetic Port-Hamiltonian Systems (EPHS) modeling language features a simple graphical syntax for expressing the energy-based interconnection of subsystems. This reduces cognitive load and facilitates communication, especially in multidisciplinary environments. As the example demonstrates, existing models can be easily integrated as subsystems of new models. Specifically, an ideal fluid model is used as a subsystem of a Navier-Stokes-Fourier fluid model, which in turn is reused as a subsystem of an (electro-)magneto hydrodynamics model. The energy-based, compositional approach simplifies understanding complex models, and it makes it easy to encapsulate, reuse, and replace (parts of) models. Moreover, structural properties of EPHS models guarantee fundamental properties of thermodynamic systems, such as conservation of energy, non-negative entropy production, and Onsager reciprocal relations. 
653 |a Ideal fluids 
653 |a Linear polarization 
653 |a Subsystems 
653 |a Computational fluid dynamics 
653 |a Magnetic properties 
653 |a Fluid mechanics 
653 |a Magnetohydrodynamics 
653 |a Modelling 
653 |a Hamiltonian functions 
653 |a Biomedical engineering 
653 |a Exergy 
700 1 |a Kraus, Michael 
700 1 |a Leyendecker, Sigrid 
773 0 |t arXiv.org  |g (Dec 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3120694906/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.00009