Cybersecurity in a Scalable Smart City Framework Using Blockchain and Federated Learning for Internet of Things (IoT)

Guardado en:
Detalles Bibliográficos
Publicado en:Smart Cities vol. 7, no. 5 (2024), p. 2802
Autor principal: Seyed Salar Sefati
Otros Autores: Craciunescu, Razvan, Arasteh, Bahman, Halunga, Simona, Fratu, Octavian, Tal, Irina
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3120737519
003 UK-CbPIL
022 |a 2624-6511 
024 7 |a 10.3390/smartcities7050109  |2 doi 
035 |a 3120737519 
045 2 |b d20240101  |b d20241231 
100 1 |a Seyed Salar Sefati  |u Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania; Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul 34460, Türkiye 
245 1 |a Cybersecurity in a Scalable Smart City Framework Using Blockchain and Federated Learning for Internet of Things (IoT) 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a <sec sec-type="highlights">HighlightsWhat are the main findings?Implementation of blockchain enhances the security and scalability of smart city frameworks.Federated Learning enables efficient and privacy-preserving data sharing among IoT devices.What are the implications of the main finding?The proposed framework significantly reduces the risk of data breaches in smart city infrastructures.Improved data privacy and security can foster greater adoption of IoT technologies in urban environments.AbstractSmart cities increasingly rely on the Internet of Things (IoT) to enhance infrastructure and public services. However, many existing IoT frameworks face challenges related to security, privacy, scalability, efficiency, and low latency. This paper introduces the Blockchain and Federated Learning for IoT (BFLIoT) framework as a solution to these issues. In the proposed method, the framework first collects real-time data, such as traffic flow and environmental conditions, then normalizes, encrypts, and securely stores it on a blockchain to ensure tamper-proof data management. In the second phase, the Data Authorization Center (DAC) uses advanced cryptographic techniques to manage secure data access and control through key generation. Additionally, edge computing devices process data locally, reducing the load on central servers, while federated learning enables distributed model training, ensuring data privacy. This approach provides a scalable, secure, efficient, and low-latency solution for IoT applications in smart cities. A comprehensive security proof demonstrates BFLIoT’s resilience against advanced cyber threats, while performance simulations validate its effectiveness, showing significant improvements in throughput, reliability, energy efficiency, and reduced delay for smart city applications. 
653 |a Smart cities 
653 |a Data management 
653 |a Data integrity 
653 |a Urban environments 
653 |a Internet of Things 
653 |a Privacy 
653 |a Blockchain 
653 |a Edge computing 
653 |a Cities 
653 |a Cryptography 
653 |a Automation 
653 |a Real time 
653 |a Federated learning 
653 |a Energy consumption 
653 |a Cybersecurity 
700 1 |a Craciunescu, Razvan  |u Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania 
700 1 |a Arasteh, Bahman  |u Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul 34460, Türkiye; Department of Computer Science, Khazar University, Baku AZ1096, Azerbaijan 
700 1 |a Halunga, Simona  |u Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania; Academy of Romanian Scientists, 05044 Bucharest, Romania 
700 1 |a Fratu, Octavian  |u Telecommunications Department, Faculty of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania; Academy of Romanian Scientists, 05044 Bucharest, Romania 
700 1 |a Tal, Irina  |u Lero, School of Computing, Dublin City University, D09 V209 Dublin, Ireland 
773 0 |t Smart Cities  |g vol. 7, no. 5 (2024), p. 2802 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3120737519/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3120737519/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3120737519/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch