Faster and Better Quantum Software Testing through Specification Reduction and Projective Measurements

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Oct 28, 2024), p. n/a
Egile nagusia: Oldfield, Noah H
Beste egile batzuk: Laaber, Christoph, Yue, Tao, Ali, Shaukat
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3121748044
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3121748044 
045 0 |b d20241028 
100 1 |a Oldfield, Noah H 
245 1 |a Faster and Better Quantum Software Testing through Specification Reduction and Projective Measurements 
260 |b Cornell University Library, arXiv.org  |c Oct 28, 2024 
513 |a Working Paper 
520 3 |a Quantum computing promises polynomial and exponential speedups in many domains, such as unstructured search and prime number factoring. However, quantum programs yield probabilistic outputs from exponentially growing distributions and are vulnerable to quantum-specific faults. Existing quantum software testing (QST) approaches treat quantum superpositions as classical distributions. This leads to two major limitations when applied to quantum programs: (1) an exponentially growing sample space distribution and (2) failing to detect quantum-specific faults such as phase flips. To overcome these limitations, we introduce a QST approach, which applies a reduction algorithm to a quantum program specification. The reduced specification alleviates the limitations (1) by enabling faster sampling through quantum parallelism and (2) by performing projective measurements in the mixed Hadamard basis. Our evaluation of 143 quantum programs across four categories demonstrates significant improvements in test runtimes and fault detection with our reduction approach. Average test runtimes improved from 169.9s to 11.8s, with notable enhancements in programs with large circuit depths (383.1s to 33.4s) and large program specifications (464.8s to 7.7s). Furthermore, our approach increases mutation scores from 54.5% to 74.7%, effectively detecting phase flip faults that non-reduced specifications miss. These results underline our approach's importance to improve QST efficiency and effectiveness. 
653 |a Prime numbers 
653 |a Algorithms 
653 |a Quantum computing 
653 |a Faults 
653 |a Fault detection 
653 |a Specifications 
653 |a Polynomials 
653 |a Run time (computers) 
653 |a Software testing 
700 1 |a Laaber, Christoph 
700 1 |a Yue, Tao 
700 1 |a Ali, Shaukat 
773 0 |t arXiv.org  |g (Oct 28, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3121748044/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2405.15450