Combining Topology-Based & Content-Based Analysis for Followee Recommendation on Twitter

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:PQDT - Global (2015)
Hoofdauteur: Yanar, Aysu
Gepubliceerd in:
ProQuest Dissertations & Theses
Onderwerpen:
Online toegang:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3122727698
003 UK-CbPIL
020 |a 9798342587280 
035 |a 3122727698 
045 2 |b d20150101  |b d20151231 
084 |a 189128  |2 nlm 
100 1 |a Yanar, Aysu 
245 1 |a Combining Topology-Based & Content-Based Analysis for Followee Recommendation on Twitter 
260 |b ProQuest Dissertations & Theses  |c 2015 
513 |a Dissertation/Thesis 
520 3 |a Twitter has become an important social platform for individuals and people share a high number of information about their personal lives, interests and viral news during emergencies. As of 2014, Twitter has 240 million active users and approximately 500 million tweets are shared every day. This information overload in Twitter has become a serious problem due to the growing volume of messages and increasing number of users. Recommender systems help to overcome this challenge.Finding interesting users and getting useful information from micro-blogging sites has become difficult since the mass of the data contains irrelevant messages, promotions and spam. In this thesis we propose a followee recommender system to overcome this problem. Recommendation in Twitter has been studied by several researchers and promising results have been achieved. In this thesis, we combine topological approaches and content- based analysis within the scope of English and Turkish language to find relevant followees for Twitter users. We propose seven different strategies by using different aspects of Twitter. Personalized recommendations have been generated for 22 active Twitter users. In order to increase effectiveness of recommendations, real Twitter data has been used. The experimental results show that using retweet data gives better recommendations than favorite data and we have achieved 0.79 success rate when we combine the topological features of Twitter. 
653 |a Customer services 
653 |a Recommender systems 
653 |a Systems design 
653 |a Gender 
653 |a Social networks 
653 |a Information overload 
653 |a Probability distribution 
653 |a Big Data 
653 |a Machine learning 
653 |a User needs 
653 |a Sentiment analysis 
653 |a Natural language processing 
653 |a Electronic commerce 
653 |a Tagging 
653 |a Utility functions 
653 |a Information retrieval 
653 |a Artificial intelligence 
653 |a Business to business commerce 
653 |a Design 
653 |a Information science 
653 |a Web studies 
653 |a Management 
653 |a Statistics 
773 0 |t PQDT - Global  |g (2015) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3122727698/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3122727698/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://open.metu.edu.tr/handle/11511/24616