Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies

Spremljeno u:
Bibliografski detalji
Izdano u:Surveys in Geophysics vol. 45, no. 5 (Oct 2024), p. 1627
Glavni autor: Castillo-Reyes, Octavio
Daljnji autori: Queralt, Pilar, Piñas-Varas, Perla, Ledo, Juanjo, Rojas, Otilio
Izdano:
Springer Nature B.V.
Teme:
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3122865859
003 UK-CbPIL
022 |a 0169-3298 
022 |a 1573-0956 
022 |a 0046-5763 
024 7 |a 10.1007/s10712-024-09855-7  |2 doi 
035 |a 3122865859 
045 2 |b d20241001  |b d20241031 
084 |a 109051  |2 nlm 
100 1 |a Castillo-Reyes, Octavio  |u Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Department of Computer Architecture, Barcelona, Spain (GRID:grid.6835.8) (ISNI:0000 0004 1937 028X); Barcelona Supercomputing Center (BSC), Barcelona, Spain (GRID:grid.10097.3f) (ISNI:0000 0004 0387 1602) 
245 1 |a Electromagnetic Subsurface Imaging in the Presence of Metallic Structures: A Review of Numerical Strategies 
260 |b Springer Nature B.V.  |c Oct 2024 
513 |a Journal Article 
520 3 |a Electromagnetic (EM) imaging aims to produce large-scale, high-resolution soil conductivity maps that provide essential information for Earth subsurface exploration. To rigorously generate EM subsurface models, one must address both the forward problem and the inverse problem. From these subsurface resistivity maps, also referred to as volumes of resistivity distribution, it is possible to extract useful information (lithology, temperature, porosity, permeability, among others) to improve our knowledge about geo-resources on which modern society depends (e.g., energy, groundwater, and raw materials, among others). However, this ability to detect electrical resistivity contrasts also makes EM imaging techniques sensitive to metallic structures whose EM footprint often exceeds their diminutive stature compared to surrounding materials. Depending on target applications, this behavior can be advantageous or disadvantageous. In this work, we review EM modeling and inverse solutions in the presence of metallic structures, emphasizing how these structures affect EM data acquisition and interpretation. By addressing the challenges posed by metallic structures, our aim is to enhance the accuracy and reliability of subsurface EM characterization, ultimately leading to improved management of geo-resources and environmental monitoring. Here, we consider the latter through the lens of a triple helix approach: physics behind metallic structures in EM modeling and imaging, development of computational tools (conventional strategies and artificial intelligence schemes), and configurations and applications. The literature review shows that, despite recent scientific advancements, EM imaging techniques are still being developed, as are software-based data processing and interpretation tools. Such progress must address geological complexities and metallic casing measurements integrity in increasing detail setups. We hope this review will provide inspiration for researchers to study the fascinating EM problem, as well as establishing a robust technological ecosystem to those interested in studying EM fields affected by metallic artifacts. 
653 |a Imaging techniques 
653 |a Data acquisition 
653 |a Environmental monitoring 
653 |a Lithology 
653 |a Electrical resistivity 
653 |a Soil temperature 
653 |a Raw materials 
653 |a Forward problem 
653 |a Soil conductivity 
653 |a Environmental management 
653 |a Groundwater 
653 |a Inverse problems 
653 |a Soil permeability 
653 |a Target detection 
653 |a Artificial intelligence 
653 |a Permeability 
653 |a Information processing 
653 |a Software 
653 |a Data processing 
653 |a Image resolution 
653 |a Porosity 
653 |a Data analysis 
653 |a Physics 
653 |a Literature reviews 
653 |a Computer program integrity 
653 |a Modelling 
653 |a Soil porosity 
653 |a Structural reliability 
653 |a Structures 
653 |a Geophysics 
653 |a Algorithms 
653 |a Numerical analysis 
653 |a Geology 
653 |a Environmental 
700 1 |a Queralt, Pilar  |u Universitat de Barcelona (UB), Departament de Dinàmica de la Terra i de l’Oceà, Institut Geomodels, Barcelona, Spain (GRID:grid.5841.8) (ISNI:0000 0004 1937 0247) 
700 1 |a Piñas-Varas, Perla  |u Universitat de Barcelona (UB), Departament de Dinàmica de la Terra i de l’Oceà, Institut Geomodels, Barcelona, Spain (GRID:grid.5841.8) (ISNI:0000 0004 1937 0247) 
700 1 |a Ledo, Juanjo  |u Complutense University of Madrid (UCM), Department of Physics of the Earth and Astrophysics, Madrid, Spain (GRID:grid.4795.f) (ISNI:0000 0001 2157 7667) 
700 1 |a Rojas, Otilio  |u Barcelona Supercomputing Center (BSC), Barcelona, Spain (GRID:grid.10097.3f) (ISNI:0000 0004 0387 1602) 
773 0 |t Surveys in Geophysics  |g vol. 45, no. 5 (Oct 2024), p. 1627 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3122865859/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3122865859/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch