Combining LLMs and Knowledge Graphs to Reduce Hallucinations in Question Answering

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Oct 31, 2024), p. n/a
Autor principal: Pusch, Larissa
Outros Autores: Conrad, Tim O F
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3123151613
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3123151613 
045 0 |b d20241031 
100 1 |a Pusch, Larissa 
245 1 |a Combining LLMs and Knowledge Graphs to Reduce Hallucinations in Question Answering 
260 |b Cornell University Library, arXiv.org  |c Oct 31, 2024 
513 |a Working Paper 
520 3 |a Advancements in natural language processing have revolutionized the way we can interact with digital information systems, such as databases, making them more accessible. However, challenges persist, especially when accuracy is critical, as in the biomedical domain. A key issue is the hallucination problem, where models generate information unsupported by the underlying data, potentially leading to dangerous misinformation. This paper presents a novel approach designed to bridge this gap by combining Large Language Models (LLM) and Knowledge Graphs (KG) to improve the accuracy and reliability of question-answering systems, on the example of a biomedical KG. Built on the LangChain framework, our method incorporates a query checker that ensures the syntactical and semantic validity of LLM-generated queries, which are then used to extract information from a Knowledge Graph, substantially reducing errors like hallucinations. We evaluated the overall performance using a new benchmark dataset of 50 biomedical questions, testing several LLMs, including GPT-4 Turbo and llama3:70b. Our results indicate that while GPT-4 Turbo outperforms other models in generating accurate queries, open-source models like llama3:70b show promise with appropriate prompt engineering. To make this approach accessible, a user-friendly web-based interface has been developed, allowing users to input natural language queries, view generated and corrected Cypher queries, and verify the resulting paths for accuracy. Overall, this hybrid approach effectively addresses common issues such as data gaps and hallucinations, offering a reliable and intuitive solution for question answering systems. The source code for generating the results of this paper and for the user-interface can be found in our Git repository: https://git.zib.de/lpusch/cyphergenkg-gui 
653 |a Questions 
653 |a Accessibility 
653 |a Accuracy 
653 |a Source code 
653 |a Graphs 
653 |a System reliability 
653 |a Information systems 
653 |a Large language models 
653 |a Queries 
653 |a Prompt engineering 
653 |a Error reduction 
653 |a Biomedical data 
653 |a Natural language processing 
653 |a Knowledge representation 
653 |a Natural language 
700 1 |a Conrad, Tim O F 
773 0 |t arXiv.org  |g (Oct 31, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3123151613/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.04181