Distributed Computation Offloading for Energy Provision Minimization in WP-MEC Networks with Multiple HAPs

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 13, 2024), p. n/a
Главный автор: Liu, Xiaoying
Другие авторы: Chen, Anping, Zheng, Kechen, Kaikai Chi, Yang, Bin, Taleb, Tarik
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3123920498
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3123920498 
045 0 |b d20241213 
100 1 |a Liu, Xiaoying 
245 1 |a Distributed Computation Offloading for Energy Provision Minimization in WP-MEC Networks with Multiple HAPs 
260 |b Cornell University Library, arXiv.org  |c Dec 13, 2024 
513 |a Working Paper 
520 3 |a This paper investigates a wireless powered mobile edge computing (WP-MEC) network with multiple hybrid access points (HAPs) in a dynamic environment, where wireless devices (WDs) harvest energy from radio frequency (RF) signals of HAPs, and then compute their computation data locally (i.e., local computing mode) or offload it to the chosen HAPs (i.e., edge computing mode). In order to pursue a green computing design, we formulate an optimization problem that minimizes the long-term energy provision of the WP-MEC network subject to the energy, computing delay and computation data demand constraints. The transmit power of HAPs, the duration of the wireless power transfer (WPT) phase, the offloading decisions of WDs, the time allocation for offloading and the CPU frequency for local computing are jointly optimized adapting to the time-varying generated computation data and wireless channels of WDs. To efficiently address the formulated non-convex mixed integer programming (MIP) problem in a distributed manner, we propose a Two-stage Multi-Agent deep reinforcement learning-based Distributed computation Offloading (TMADO) framework, which consists of a high-level agent and multiple low-level agents. The high-level agent residing in all HAPs optimizes the transmit power of HAPs and the duration of the WPT phase, while each low-level agent residing in each WD optimizes its offloading decision, time allocation for offloading and CPU frequency for local computing. Simulation results show the superiority of the proposed TMADO framework in terms of the energy provision minimization. 
653 |a Wireless networks 
653 |a Energy harvesting 
653 |a Linear programming 
653 |a Integer programming 
653 |a Edge computing 
653 |a Wireless power transmission 
653 |a Mobile computing 
653 |a Computation offloading 
653 |a Clean energy 
653 |a Multiagent systems 
653 |a Mixed integer 
653 |a Design optimization 
653 |a Radio signals 
700 1 |a Chen, Anping 
700 1 |a Zheng, Kechen 
700 1 |a Kaikai Chi 
700 1 |a Yang, Bin 
700 1 |a Taleb, Tarik 
773 0 |t arXiv.org  |g (Dec 13, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3123920498/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.00397