Research on noise reduction and data mining techniques for pavement dynamic response signals

Guardado en:
Detalles Bibliográficos
Publicado en:Smart and Resilient Transportation vol. 6, no. 2 (2024), p. 115-129
Autor principal: Xue Xin
Otros Autores: Jiao, Yuepeng, Zhang, Yunfeng, Liang, Ming, Yao, Zhanyong
Publicado:
Emerald Group Publishing Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3124178357
003 UK-CbPIL
022 |a 2632-0495 
024 7 |a 10.1108/SRT-11-2023-0013  |2 doi 
035 |a 3124178357 
045 2 |b d20240701  |b d20241231 
100 1 |a Xue Xin  |u School of Civil Engineering and Architecture, University of Jinan, Jinan, China 
245 1 |a Research on noise reduction and data mining techniques for pavement dynamic response signals 
260 |b Emerald Group Publishing Limited  |c 2024 
513 |a Journal Article 
520 3 |a PurposeThis study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.Design/methodology/approachThe paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.FindingsThe study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.Originality/valueThe authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification. 
651 4 |a China 
653 |a Load 
653 |a Outliers (statistics) 
653 |a Humidity 
653 |a Dynamic response 
653 |a Wavelet transforms 
653 |a Data mining 
653 |a Calibration 
653 |a Signal processing 
653 |a Frequency ranges 
653 |a Decomposition 
653 |a Automobiles 
653 |a Asphalt pavements 
653 |a Design specifications 
653 |a Asphalt 
653 |a Automation 
653 |a Stress analysis 
653 |a Noise reduction 
653 |a Signal reflection 
653 |a Strain gauges 
653 |a Data analysis 
653 |a Spatial data 
653 |a Infrastructure 
653 |a Fourier transforms 
653 |a Clustering 
653 |a Time-frequency analysis 
653 |a Sensors 
653 |a Effectiveness 
653 |a Heavy duty trucks 
653 |a Algorithms 
653 |a Information industry 
653 |a Engineering 
653 |a Real time 
653 |a Frequency analysis 
653 |a Low pass filters 
653 |a Roads & highways 
653 |a Environmental 
700 1 |a Jiao, Yuepeng  |u School of Qilu Transportation, Shandong University, Jinan, China 
700 1 |a Zhang, Yunfeng  |u School of Qilu Transportation, Shandong University, Jinan, China 
700 1 |a Liang, Ming  |u School of Qilu Transportation, Shandong University, Jinan, China 
700 1 |a Yao, Zhanyong  |u School of Qilu Transportation, Shandong University, Jinan, China 
773 0 |t Smart and Resilient Transportation  |g vol. 6, no. 2 (2024), p. 115-129 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3124178357/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3124178357/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3124178357/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch