Improving DNN Modularization via Activation-Driven Training

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 1, 2024), p. n/a
Autor principal: Ngo, Tuan
Otros Autores: Hassan, Abid, Saad Shafiq, Medvidovic, Nenad
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3124190986
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3124190986 
045 0 |b d20241101 
100 1 |a Ngo, Tuan 
245 1 |a Improving DNN Modularization via Activation-Driven Training 
260 |b Cornell University Library, arXiv.org  |c Nov 1, 2024 
513 |a Working Paper 
520 3 |a Deep Neural Networks (DNNs) suffer from significant retraining costs when adapting to evolving requirements. Modularizing DNNs offers the promise of improving their reusability. Previous work has proposed techniques to decompose DNN models into modules both during and after training. However, these strategies yield several shortcomings, including significant weight overlaps and accuracy losses across modules, restricted focus on convolutional layers only, and added complexity and training time by introducing auxiliary masks to control modularity. In this work, we propose MODA, an activation-driven modular training approach. MODA promotes inherent modularity within a DNN model by directly regulating the activation outputs of its layers based on three modular objectives: intra-class affinity, inter-class dispersion, and compactness. MODA is evaluated using three well-known DNN models and three datasets with varying sizes. This evaluation indicates that, compared to the existing state-of-the-art, using MODA yields several advantages: (1) MODA accomplishes modularization with 29% less training time; (2) the resultant modules generated by MODA comprise 2.4x fewer weights and 3.5x less weight overlap while (3) preserving the original model's accuracy without additional fine-tuning; in module replacement scenarios, (4) MODA improves the accuracy of a target class by 12% on average while ensuring minimal impact on the accuracy of other classes. 
653 |a Modularity 
653 |a Accuracy 
653 |a Modularization 
653 |a Modules 
653 |a Artificial neural networks 
700 1 |a Hassan, Abid 
700 1 |a Saad Shafiq 
700 1 |a Medvidovic, Nenad 
773 0 |t arXiv.org  |g (Nov 1, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3124190986/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.01074