Enhancing Maritime Situational Awareness through End-to-End Onboard Raw Data Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Nov 5, 2024), p. n/a
Autor principal: Roberto Del Prete
Otros Autores: Salvoldi, Manuel, Barretta, Domenico, Longépé, Nicolas, Meoni, Gabriele, Karnieli, Arnon, Graziano, Maria Daniela, Renga, Alfredo
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3125867302
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3125867302 
045 0 |b d20241105 
100 1 |a Roberto Del Prete 
245 1 |a Enhancing Maritime Situational Awareness through End-to-End Onboard Raw Data Analysis 
260 |b Cornell University Library, arXiv.org  |c Nov 5, 2024 
513 |a Working Paper 
520 3 |a Satellite-based onboard data processing is crucial for time-sensitive applications requiring timely and efficient rapid response. Advances in edge artificial intelligence are shifting computational power from ground-based centers to on-orbit platforms, transforming the "sensing-communication-decision-feedback" cycle and reducing latency from acquisition to delivery. The current research presents a framework addressing the strict bandwidth, energy, and latency constraints of small satellites, focusing on maritime monitoring. The study contributes three main innovations. Firstly, it investigates the application of deep learning techniques for direct ship detection and classification from raw satellite imagery. By simplifying the onboard processing chain, our approach facilitates direct analyses without requiring computationally intensive steps such as calibration and ortho-rectification. Secondly, to address the scarcity of raw satellite data, we introduce two novel datasets, VDS2Raw and VDV2Raw, which are derived from raw data from Sentinel-2 and Vegetation and Environment Monitoring New Micro Satellite (VENuS) missions, respectively, and enriched with Automatic Identification System (AIS) records. Thirdly, we characterize the tasks' optimal single and multiple spectral band combinations through statistical and feature-based analyses validated on both datasets. In sum, we demonstrate the feasibility of the proposed method through a proof-of-concept on CubeSat-like hardware, confirming the models' potential for operational satellite-based maritime monitoring. 
653 |a Microsatellites 
653 |a Onboard data processing 
653 |a Situational awareness 
653 |a Data analysis 
653 |a Datasets 
653 |a Monitoring 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Satellites 
653 |a Small satellites 
653 |a Cubesat 
653 |a Satellite imagery 
653 |a Feasibility studies 
700 1 |a Salvoldi, Manuel 
700 1 |a Barretta, Domenico 
700 1 |a Longépé, Nicolas 
700 1 |a Meoni, Gabriele 
700 1 |a Karnieli, Arnon 
700 1 |a Graziano, Maria Daniela 
700 1 |a Renga, Alfredo 
773 0 |t arXiv.org  |g (Nov 5, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3125867302/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.03403