New Two-Dimensional Materials Obtained by Functionalization of Boron Graphdiyne Layers with Nickel

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Nanomaterials vol. 14, no. 21 (2024), p. 1706-1722
Yazar: Estefanía, Germán
Diğer Yazarlar: López, María J, Alonso, Julio A
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3126009415
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano14211706  |2 doi 
035 |a 3126009415 
045 2 |b d20240101  |b d20241231 
084 |a 231543  |2 nlm 
100 1 |a Estefanía, Germán  |u Departamento de Física Teórica, Atómica y Optica, University of Valladolid, 47011 Valladolid, Spain; mariajlopez@uva.es (M.J.L.); jaalonso@uva.es (J.A.A.) 
245 1 |a New Two-Dimensional Materials Obtained by Functionalization of Boron Graphdiyne Layers with Nickel 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The decoration of hexagonal boron graphdiyne (BGDY) layers with Ni atoms has been investigated by density functional calculations. For one, two, and three Ni atoms per hexagon, the BGDY structure is approximately maintained. Decoration with six Ni atoms per hexagon leads to the formation of a novel, very stable two-dimensional material in which the hexagonal structure of BGDY is substantially distorted. The Ni-doped materials have a semiconductor character, and the electronic band gap width can be tailored by varying the amount of adsorbed Ni. BGDY-2Ni, BGDY-3Ni, and BGDY-6Ni have electronic band gaps promising for infrared detectors. This work shows that computer simulation helps to discover new materials by the functionalization of layered carbon materials with metal atoms. 
653 |a Boron 
653 |a Atomic structure 
653 |a Nanoparticles 
653 |a Carbon 
653 |a Energy gap 
653 |a Infrared detectors 
653 |a Nickel 
653 |a Adsorption 
653 |a Computer simulation 
653 |a Energy 
653 |a Decoration 
653 |a Graphene 
653 |a Two dimensional materials 
700 1 |a López, María J  |u Departamento de Física Teórica, Atómica y Optica, University of Valladolid, 47011 Valladolid, Spain; mariajlopez@uva.es (M.J.L.); jaalonso@uva.es (J.A.A.) 
700 1 |a Alonso, Julio A  |u Departamento de Física Teórica, Atómica y Optica, University of Valladolid, 47011 Valladolid, Spain; mariajlopez@uva.es (M.J.L.); jaalonso@uva.es (J.A.A.) 
773 0 |t Nanomaterials  |g vol. 14, no. 21 (2024), p. 1706-1722 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3126009415/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3126009415/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3126009415/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch