Review on Hardware Devices and Software Techniques Enabling Neural Network Inference Onboard Satellites

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 16, no. 21 (2024), p. 3957
Autor principal: Lorenzo, Diana
Otros Autores: Dini, Pierpaolo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3126018520
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16213957  |2 doi 
035 |a 3126018520 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Lorenzo, Diana  |u Independent Researcher, 56100 Pisa, Italy 
245 1 |a Review on Hardware Devices and Software Techniques Enabling Neural Network Inference Onboard Satellites 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Neural networks (NNs) have proven their ability to deal with many computer vision tasks, including image-based remote sensing such as the identification and segmentation of hyperspectral images captured by satellites. Often, NNs run on a ground system upon receiving the data from the satellite. On the one hand, this approach introduces a considerable latency due to the time needed to transmit the satellite-borne images to the ground station. On the other hand, it allows the employment of computationally intensive NNs to analyze the received data. Low-budget missions, e.g., CubeSat missions, have computation capability and power consumption requirements that may prevent the deployment of complex NNs onboard satellites. These factors represent a limitation for applications that may benefit from a low-latency response, e.g., wildfire detection, oil spill identification, etc. To address this problem, in the last few years, some missions have started adopting NN accelerators to reduce the power consumption and the inference time of NNs deployed onboard satellites. Additionally, the harsh space environment, including radiation, poses significant challenges to the reliability and longevity of onboard hardware. In this review, we will show which hardware accelerators, both from industry and academia, have been found suitable for onboard NN acceleration and the main software techniques aimed at reducing the computational requirements of NNs when addressing low-power scenarios. 
653 |a Oil spills 
653 |a Software 
653 |a Satellite communications 
653 |a Hardware 
653 |a Aerospace environments 
653 |a Satellite imagery 
653 |a Remote sensing 
653 |a Cybersecurity 
653 |a Data processing 
653 |a Image processing 
653 |a Computer vision 
653 |a Digital signal processors 
653 |a Power consumption 
653 |a Fault tolerance 
653 |a Workloads 
653 |a Satellites 
653 |a Radiation 
653 |a Climate change 
653 |a Accelerators 
653 |a Field programmable gate arrays 
653 |a Efficiency 
653 |a Wildfires 
653 |a Spacecraft recovery 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Image segmentation 
653 |a Costs 
653 |a Power 
653 |a Onboard 
653 |a Network latency 
653 |a Inference 
653 |a Missions 
653 |a Power management 
653 |a Design 
653 |a Algorithms 
653 |a Latency 
653 |a Cubesat 
653 |a Hyperspectral imaging 
700 1 |a Dini, Pierpaolo  |u Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56100 Pisa, Italy; <email>pierpaolo.dini@ing.unipi.it</email> 
773 0 |t Remote Sensing  |g vol. 16, no. 21 (2024), p. 3957 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3126018520/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3126018520/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3126018520/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch