Enhancing Decision-Making in Sustainable Urban Drainage System Optimization: A Novel Framework for Sparse Pareto-Fronts

Uloženo v:
Podrobná bibliografie
Vydáno v:Water Resources Management vol. 38, no. 15 (Dec 2024), p. 6157
Hlavní autor: Seyedashraf, Omid
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3126248013
003 UK-CbPIL
022 |a 0920-4741 
022 |a 1573-1650 
024 7 |a 10.1007/s11269-024-03951-4  |2 doi 
035 |a 3126248013 
045 2 |b d20241201  |b d20241231 
084 |a 108395  |2 nlm 
100 1 |a Seyedashraf, Omid  |u Kermanshah University of Technology, Department of Civil Engineering, Kermanshah, Iran (GRID:grid.459724.9) (ISNI:0000 0004 7433 9074) 
245 1 |a Enhancing Decision-Making in Sustainable Urban Drainage System Optimization: A Novel Framework for Sparse Pareto-Fronts 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Effective decision-making in urban water infrastructure optimization, particularly in sustainable urban drainage systems (SuDS), hinges on navigating complex multi-objective problems. This study addresses the challenge of sparse Pareto-fronts in many-objective SuDS design, often caused by algorithmic limitations and the intricate objective function interactions, impacting the availability of diverse design alternatives for decision-makers. To tackle these challenges, this research proposes a novel framework that integrates advanced data imputation and surrogate modeling techniques. The framework uses artificial intelligence methods to populate the sparse regions by replicating the Pareto-front structure, predicting decision variables to guide further simulations and find efficient solutions without repeated optimization runs. The methodology is validated through a SuDS design case study located in Ann Arbor, Michigan. Following the initial optimization, sparse regions were identified in four of the eight objective functions. Using the proposed framework, 32 new and efficient SuDS designs were introduced into the sparse regions without additional optimization, enhancing the uniformity of the Pareto front. This study enhances decision support tools in urban flood management by increasing the informativeness of design alternatives available to planners and engineers. 
653 |a Fronts 
653 |a Water engineering 
653 |a Artificial intelligence 
653 |a Flood management 
653 |a Sustainability 
653 |a Optimization 
653 |a Availability 
653 |a Multiple objective analysis 
653 |a Design 
653 |a Flood control 
653 |a Drainage systems 
653 |a Decision making 
653 |a Alternatives 
653 |a Objective function 
653 |a Urban drainage 
653 |a Water supply systems 
653 |a Design optimization 
653 |a Flood predictions 
653 |a Economic 
773 0 |t Water Resources Management  |g vol. 38, no. 15 (Dec 2024), p. 6157 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3126248013/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3126248013/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch