Permissioned blockchain network for proactive access control to electronic health records

Gardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Informatics and Decision Making vol. 24 (2024), p. 1
Autor Principal: Psarra, Evgenia
Outros autores: Apostolou, Dimitris, Verginadis, Yiannis, Patiniotakis, Ioannis, Gregoris Mentzas
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3126412645
003 UK-CbPIL
022 |a 1472-6947 
024 7 |a 10.1186/s12911-024-02708-8  |2 doi 
035 |a 3126412645 
045 2 |b d20240101  |b d20241231 
084 |a 58451  |2 nlm 
100 1 |a Psarra, Evgenia 
245 1 |a Permissioned blockchain network for proactive access control to electronic health records 
260 |b Springer Nature B.V.  |c 2024 
513 |a Journal Article 
520 3 |a BackgroundAs digital healthcare services handle increasingly more sensitive health data, robust access control methods are required. Especially in emergency conditions, where the patient’s health situation is in peril, different healthcare providers associated with critical cases may need to be granted permission to acquire access to Electronic Health Records (EHRs) of patients. The research objective of this work is to develop a proactive access control method that can grant emergency clinicians access to sensitive health data, guaranteeing the integrity and security of the data, and generating trust without the need for a trusted third party.MethodsA contextual and blockchain-based mechanism is proposed that allows access to sensitive EHRs by applying prognostic procedures where information based on context, is utilized to identify critical situations and grant access to medical data. Specifically, to enable proactivity, Long Short Term Memory (LSTM) Neural Networks (NNs) are applied that utilize patient’s recent health history to prognose the next two-hour health metrics values. Fuzzy logic is used to evaluate the severity of the patient’s health state. These techniques are incorporated in a private and permissioned Hyperledger-Fabric blockchain network, capable of securing patient’s sensitive information in the blockchain network.ResultsThe developed access control method provides secure access for emergency clinicians to sensitive information and simultaneously safeguards the patient’s well-being. Integrating this predictive mechanism within the blockchain network proved to be a robust tool to enhance the performance of the access control mechanism. Furthermore, the blockchain network of this work can record the history of who and when had access to a specific patient’s sensitive EHRs, guaranteeing the integrity and security of the data, as well as recording the latency of this mechanism, where three different access control cases are evaluated. This access control mechanism is to be enforced in a real-life scenario in hospitals.ConclusionsThe proposed mechanism informs proactively the emergency team of professional clinicians about patients’ critical situations by combining fuzzy and predictive machine learning techniques incorporated in the private and permissioned blockchain network, and it exploits the distributed data of the blockchain architecture, guaranteeing the integrity and security of the data, and thus, enhancing the users’ trust to the access control mechanism. 
653 |a Emergency medical services 
653 |a Security 
653 |a Fuzzy logic 
653 |a Health care 
653 |a Patients 
653 |a Blockchain 
653 |a Predictive control 
653 |a Digital currencies 
653 |a Fuzzy control 
653 |a Personal health 
653 |a Health services 
653 |a Privacy 
653 |a Long short-term memory 
653 |a Machine learning 
653 |a Access control 
653 |a Electronic medical records 
653 |a Electronic health records 
653 |a Data integrity 
653 |a Robust control 
653 |a Neural networks 
653 |a Distributed ledger 
653 |a Sensitivity analysis 
653 |a Network latency 
653 |a Trust 
653 |a Information processing 
653 |a Trusted third parties 
653 |a Latency 
653 |a Control methods 
653 |a Integrity 
653 |a Emergency procedures 
653 |a Medical prognosis 
653 |a Well being 
700 1 |a Apostolou, Dimitris 
700 1 |a Verginadis, Yiannis 
700 1 |a Patiniotakis, Ioannis 
700 1 |a Gregoris Mentzas 
773 0 |t BMC Medical Informatics and Decision Making  |g vol. 24 (2024), p. 1 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3126412645/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3126412645/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3126412645/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch