Performance evaluation of NLP and CNN models for disaster detection using social media data

Zapisane w:
Opis bibliograficzny
Wydane w:Social Network Analysis and Mining vol. 14, no. 1 (Dec 2024), p. 213
Wydane:
Springer Nature B.V.
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3126444162
003 UK-CbPIL
022 |a 1869-5450 
022 |a 1869-5469 
024 7 |a 10.1007/s13278-024-01374-y  |2 doi 
035 |a 3126444162 
045 2 |b d20241201  |b d20241231 
245 1 |a Performance evaluation of NLP and CNN models for disaster detection using social media data 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The use of social media data for disaster-type identification has been turning progressively important in recent years. With the extensive dependency on social networking sites, people can share real-time information and updates about disasters, making it a valuable source of information for disaster management organizations. The use of natural language processing (NLP) and computer vision techniques can help process and examine large amounts of social media data to gain valuable insights into the nature and extent of a disaster. In this study, NLP, and convolutional neural networks (CNN) models were applied to social media data for disaster-type recognition. The language models used were BERT-Base-Uncased, DistilBERT-Base-Uncased, Twitter-RoBERTa-Base, and FinBERT. Two convolutional neural network (CNN) models, Inception v3 and DenseNet were also applied. The models were evaluated on the CrisisMMD dataset. The outcome proved that the language models achieved a uniform accuracy of 94% across disaster-related tweet classification tasks, while DistilBERT-Base-Uncased demonstrated the fastest training and testing time which is important for prompt response systems. In terms of the CNN models, DenseNet outperformed Inception v3 just by a small margin of 1 or 2% in terms of accuracy, recall, precision, and F1 score. This entails that the DistilBERT-Base-Uncased and DenseNet model has the potential to be better suited for disaster-type recognition using social media data in terms of accuracy and time. 
653 |a Testing time 
653 |a Performance evaluation 
653 |a Social networks 
653 |a Artificial neural networks 
653 |a Computer vision 
653 |a Acknowledgment 
653 |a Disasters 
653 |a Accuracy 
653 |a Sentiment analysis 
653 |a Recognition 
653 |a Social media 
653 |a Neural networks 
653 |a Classification 
653 |a Earthquakes 
653 |a Disaster management 
653 |a Real time 
653 |a Natural language processing 
653 |a Information management 
653 |a Networking 
653 |a Digital media 
653 |a Dependency 
653 |a Models 
653 |a Mass media 
653 |a Data 
653 |a Language usage 
653 |a Language 
653 |a Language modeling 
773 0 |t Social Network Analysis and Mining  |g vol. 14, no. 1 (Dec 2024), p. 213 
786 0 |d ProQuest  |t Social Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3126444162/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3126444162/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3126444162/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch