Optimization of valve switch control for contamination detection in water distribution network

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:NPJ Clean Water vol. 7, no. 1 (2024), p. 113
मुख्य लेखक: Pan, Jeng-Shyang
अन्य लेखक: Shu, Hao, Yang, Qingyong, Huang, Yu-Chung, Chu, Shu-Chuan
प्रकाशित:
Nature Publishing Group
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3127422944
003 UK-CbPIL
022 |a 2059-7037 
024 7 |a 10.1038/s41545-024-00407-5  |2 doi 
035 |a 3127422944 
045 2 |b d20240101  |b d20241231 
100 1 |a Pan, Jeng-Shyang  |u Nanjing University of Information Science and Technology, School of Artificial Intelligence, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313); Chaoyang University of Technology, Department of Information Management, Taichung, Taiwan (GRID:grid.411218.f) (ISNI:0000 0004 0638 5829) 
245 1 |a Optimization of valve switch control for contamination detection in water distribution network 
260 |b Nature Publishing Group  |c 2024 
513 |a Journal Article 
520 3 |a As the urban population increases, the consumption of water resources is also increasing. Safely and effectively supplying water to cities has become an issue that urgently needs to be addressed. The purpose of this research is to substantially reduce the number of contaminants in water distribution networks (WDNs) by using valve control, ensuring that the water infrastructure is not impacted by the adverse effects of wastewater. In addition, an improved parallel binary gannet algorithm (IPBGOA) is proposed and combined with this approach to solve the optimization problem of WDN contamination efficiently. The proposed method is compared with the gannet optimization algorithm (GOA), particle swarm optimization (PSO), differential evolution (DE), the grey wolf optimization (GWO), and the genetic algorithm (GA) on synthetic benchmark networks in simulation experiments. The evidence from the study indicates that the algorithm proposed in this paper is significantly more efficient and reliable than the comparison methods. 
653 |a Water resources 
653 |a Particle swarm optimization 
653 |a Water engineering 
653 |a Water distribution 
653 |a Evolutionary computation 
653 |a Genetic algorithms 
653 |a Contaminants 
653 |a Algorithms 
653 |a Urban populations 
653 |a Water consumption 
653 |a Water pollution 
653 |a Contamination 
653 |a Water supply systems 
653 |a Control valves 
653 |a Pollution control 
653 |a Computer science 
653 |a Water supply 
653 |a Valves 
653 |a Infrastructure 
653 |a Sustainable development 
653 |a Network management systems 
653 |a Consumption 
653 |a Public health 
653 |a Linear programming 
653 |a Engineering 
653 |a Optimization algorithms 
653 |a Information science 
653 |a Environmental 
700 1 |a Shu, Hao  |u Nanjing University of Information Science and Technology, School of Computer Science, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313) 
700 1 |a Yang, Qingyong  |u Shandong University of Science and Technology, College of Computer Science and Engineering, Qingdao, China (GRID:grid.412508.a) (ISNI:0000 0004 1799 3811) 
700 1 |a Huang, Yu-Chung  |u LTD, Taiwan Smarter Water Co., Taiwan, China (GRID:grid.412508.a) 
700 1 |a Chu, Shu-Chuan  |u Nanjing University of Information Science and Technology, School of Artificial Intelligence, Nanjing, China (GRID:grid.260478.f) (ISNI:0000 0000 9249 2313); Shandong University of Science and Technology, College of Computer Science and Engineering, Qingdao, China (GRID:grid.412508.a) (ISNI:0000 0004 1799 3811) 
773 0 |t NPJ Clean Water  |g vol. 7, no. 1 (2024), p. 113 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3127422944/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3127422944/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch