What shapes statistical and data literacy research in K-12 STEM education? A systematic review of metrics and instructional strategies

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of STEM Education vol. 11, no. 1 (Dec 2024), p. 58
Autor principal: Friedrich, Anja
Altres autors: Schreiter, Saskia, Vogel, Markus, Becker-Genschow, Sebastian, Brünken, Roland, Kuhn, Jochen, Lehmann, Jessica, Malone, Sarah
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3127426864
003 UK-CbPIL
022 |a 2196-7822 
024 7 |a 10.1186/s40594-024-00517-z  |2 doi 
035 |a 3127426864 
045 2 |b d20241201  |b d20241231 
084 |a 243237  |2 nlm 
100 1 |a Friedrich, Anja  |u Saarland University, Department of Education, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
245 1 |a What shapes statistical and data literacy research in K-12 STEM education? A systematic review of metrics and instructional strategies 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The pervasive digitization of society underscores the crucial role of data and its significant impact on decision-making across various domains. As a result, it is essential for individuals to acquire competencies in handling data. This need is particularly pertinent in K-12 education, where early engagement with data and statistics can lay a foundational understanding for future academic and professional endeavors. Additionally, K-12 education should provide students with critical skills necessary for navigating the complexities of daily life and making informed decisions in a data-rich society. This systematic review examines the state of research on statistical and data literacy in K-12 STEM (Science, Technology, Engineering, and Mathematics) education. It focuses specifically on cognitive, affective, and behavioral metrics and pedagogical approaches empirically investigated in this context. Using a rigorous selection process, we identified and synthesized 83 original empirical papers. Additionally, we invited the authors of these studies to share their perspectives on future strategies for addressing statistical and data literacy. The results indicate that the included studies primarily focus on the construct of statistical literacy, which is operationalized through a diverse array of metrics, predominantly within the context of mathematics education. We identified effective pedagogical approaches, such as authentic problem-solving and the integration of real-world data. The researchers surveyed emphasized the importance of interdisciplinary teaching, adapted curricula, and improved professional development for pre- and in-service teachers. Our findings underscore the growing relevance of this field, but suggest that integrated perspectives on statistical and data literacy within STEM subjects are limited. 
610 4 |a Organization for Economic Cooperation & Development 
651 4 |a Germany 
653 |a Literacy 
653 |a Professional development 
653 |a Context 
653 |a Problem solving 
653 |a Technical education 
653 |a Statistical analysis 
653 |a Education 
653 |a Decision making 
653 |a Pedagogy 
653 |a Computer science 
653 |a Information literacy 
653 |a Curricula 
653 |a Mathematics education 
653 |a STEM education 
653 |a Skills 
653 |a Technology education 
653 |a Artificial intelligence 
653 |a Science education 
653 |a Knowledge 
653 |a Data collection 
653 |a Digitization 
653 |a Systematic review 
653 |a Teaching methods 
653 |a Terminology 
653 |a Social 
653 |a Elementary Secondary Education 
653 |a Educational Methods 
653 |a Statistical Data 
653 |a Teacher Selection 
653 |a Educational Strategies 
700 1 |a Schreiter, Saskia  |u University of Education, Institute of Mathematics and Computer Science, Schwäbisch Gmünd, Germany (GRID:grid.460114.6) (ISNI:0000 0001 0672 0154) 
700 1 |a Vogel, Markus  |u Heidelberg University of Education, Institute of Mathematics and Computer Science, Heidelberg, Germany (GRID:grid.461780.c) (ISNI:0000 0001 2264 5158) 
700 1 |a Becker-Genschow, Sebastian  |u University of Cologne, Faculty of Mathematics and Natural Sciences, Cologne, Germany (GRID:grid.6190.e) (ISNI:0000 0000 8580 3777) 
700 1 |a Brünken, Roland  |u Saarland University, Department of Education, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
700 1 |a Kuhn, Jochen  |u Ludwig-Maximilians-Universität München, Faculty of Physics, Munich, Deutschland (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X) 
700 1 |a Lehmann, Jessica  |u Saarland University, Department of Education, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
700 1 |a Malone, Sarah  |u Saarland University, Department of Education, Saarbrücken, Germany (GRID:grid.11749.3a) (ISNI:0000 0001 2167 7588) 
773 0 |t International Journal of STEM Education  |g vol. 11, no. 1 (Dec 2024), p. 58 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3127426864/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3127426864/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch