Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Nov 12, 2024), p. n/a
Autor principal: He, Jesse
Altres autors: Jenne, Helen, Chau, Herman, Brown, Davis, Raugas, Mark, Billey, Sara, Kvinge, Henry
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3128024226
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3128024226 
045 0 |b d20241112 
100 1 |a He, Jesse 
245 1 |a Machines and Mathematical Mutations: Using GNNs to Characterize Quiver Mutation Classes 
260 |b Cornell University Library, arXiv.org  |c Nov 12, 2024 
513 |a Working Paper 
520 3 |a Machine learning is becoming an increasingly valuable tool in mathematics, enabling one to identify subtle patterns across collections of examples so vast that they would be impossible for a single researcher to feasibly review and analyze. In this work, we use graph neural networks to investigate quiver mutation -- an operation that transforms one quiver (or directed multigraph) into another -- which is central to the theory of cluster algebras with deep connections to geometry, topology, and physics. In the study of cluster algebras, the question of mutation equivalence is of fundamental concern: given two quivers, can one efficiently determine if one quiver can be transformed into the other through a sequence of mutations? Currently, this question has only been resolved in specific cases. In this paper, we use graph neural networks and AI explainability techniques to discover mutation equivalence criteria for the previously unknown case of quivers of type \(\tilde{D}_n\). Along the way, we also show that even without explicit training to do so, our model captures structure within its hidden representation that allows us to reconstruct known criteria from type \(D_n\), adding to the growing evidence that modern machine learning models are capable of learning abstract and general rules from mathematical data. 
653 |a Machine learning 
653 |a Clusters 
653 |a Mutation 
653 |a Graph neural networks 
653 |a Equivalence 
653 |a Neural networks 
653 |a Topology 
653 |a Criteria 
700 1 |a Jenne, Helen 
700 1 |a Chau, Herman 
700 1 |a Brown, Davis 
700 1 |a Raugas, Mark 
700 1 |a Billey, Sara 
700 1 |a Kvinge, Henry 
773 0 |t arXiv.org  |g (Nov 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3128024226/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.07467