Equation-informed data-driven identification of flow budgets and dynamics

Zapisane w:
Opis bibliograficzny
Wydane w:arXiv.org (Dec 3, 2024), p. n/a
1. autor: Sevryugina, Nataliya
Kolejni autorzy: Costanzo, Serena, Stephen de Bruyn Kops, Caulfield, Colm-cille, Mortazavi, Iraj, Sayadi, Taraneh
Wydane:
Cornell University Library, arXiv.org
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full text outside of ProQuest
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3128886197
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3128886197 
045 0 |b d20241203 
100 1 |a Sevryugina, Nataliya 
245 1 |a Equation-informed data-driven identification of flow budgets and dynamics 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Computational Fluid Dynamics (CFD) is an indispensable method of fluid modelling in engineering applications, reducing the need for physical prototypes and testing for tasks such as design optimisation and performance analysis. Depending on the complexity of the system under consideration, models ranging from low to high fidelity can be used for prediction, allowing significant speed-up. However, the choice of model requires information about the actual dynamics of the flow regime. Correctly identifying the regions/clusters of flow that share the same dynamics has been a challenging research topic to date. In this study, we propose a novel hybrid approach to flow clustering. It consists of characterising each sample point of the system with equation-based features, i.e. features are budgets that represent the contribution of each term from the original governing equation to the local dynamics at each sample point. This was achieved by applying the Sparse Identification of Nonlinear Dynamical systems (SINDy) method pointwise to time evolution data. The method proceeds with equation-based clustering using the Girvan-Newman algorithm. This allows the detection of communities that share the same physical dynamics. The algorithm is implemented in both Eulerian and Lagrangian frameworks. In the Lagrangian, i.e. dynamic approach, the clustering is performed on the trajectory of each point, allowing the change of clusters to be represented also in time. The performance of the algorithm is first tested on a flow around a cylinder. The construction of the dynamic clusters in this test case clearly shows the evolution of the wake from the steady state solution through the transient to the oscillatory solution. Dynamic clustering was then successfully tested on turbulent flow data. Two distinct and well-defined clusters were identified and their temporal evolution was reconstructed. 
653 |a Budgets 
653 |a Algorithms 
653 |a Dynamical systems 
653 |a Nonlinear systems 
653 |a Computational fluid dynamics 
653 |a Design optimization 
653 |a Nonlinear dynamics 
653 |a Clustering 
653 |a Task complexity 
653 |a Equilibrium flow 
653 |a Evolutionary algorithms 
653 |a Fluid flow 
700 1 |a Costanzo, Serena 
700 1 |a Stephen de Bruyn Kops 
700 1 |a Caulfield, Colm-cille 
700 1 |a Mortazavi, Iraj 
700 1 |a Sayadi, Taraneh 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3128886197/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.09545