Performance Analysis of uRLLC in scalable Cell-free Radio Access Network System

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 12, 2024), p. n/a
Autor principal: Zhang, Ziyang
Otros Autores: Wang, Dongming, Guo, Yunxiang, Cao, Yang, You, Xiaohu
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3128887269
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3128887269 
045 0 |b d20241212 
100 1 |a Zhang, Ziyang 
245 1 |a Performance Analysis of uRLLC in scalable Cell-free Radio Access Network System 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a As a critical component of beyond fifth-generation (B5G) and sixth-generation (6G) mobile communication systems, ultra-reliable low-latency communication (uRLLC) imposes stringent requirements on latency and reliability. In recent years, with the improvement of mobile communication network, centralized and distributed processing schemes for cellfree massive multiple-input multiple-output (CF-mMIMO) have attracted significant research attention. This paper investigates the performance of a novel scalable cell-free radio access network (CF-RAN) architecture featuring multiple edge distributed units (EDUs) under the finite block length regime. Closed expressions for the upper and lower bounds of its expected spectral efficiency (SE) performance are derived, where centralized and fully distributed deployment can be treated as two special cases, respectively. Furthermore, the spatial distribution of user equipments (UEs) and remote radio units (RRUs) is examined and the analysis reveals that the interleaving RRUs deployment associated with the EDU can enhance SE performance under finite block length constraints with specific transmission error probability. The paper also compares Monte Carlo simulation results with multi-RRU clustering-based collaborative processing, validating the accuracy of the space-time exchange theory in the scalable CF-RAN scenario. By deploying scalable EDUs, a practical trade-off between latency and reliability can be achieved through spatial degree-of-freedom (DoF), offering a distributed and scalable realization of the space-time exchange theory. 
653 |a Lower bounds 
653 |a Monte Carlo simulation 
653 |a Collaboration 
653 |a Exchanging 
653 |a System reliability 
653 |a Relativity 
653 |a Communication 
653 |a Clustering 
653 |a Network reliability 
653 |a Network latency 
653 |a Spacetime 
653 |a Error analysis 
653 |a Distributed processing 
653 |a Mobile communication systems 
700 1 |a Wang, Dongming 
700 1 |a Guo, Yunxiang 
700 1 |a Cao, Yang 
700 1 |a You, Xiaohu 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3128887269/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.09128