Parallel in time partially explicit splitting scheme for high contrast multiscale problems

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Dec 22, 2024), p. n/a
1. Verfasser: Wang, Yating
Weitere Verfasser: Yang, Zhengya, Leung, Wing Tat
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3128887721
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3128887721 
045 0 |b d20241222 
100 1 |a Wang, Yating 
245 1 |a Parallel in time partially explicit splitting scheme for high contrast multiscale problems 
260 |b Cornell University Library, arXiv.org  |c Dec 22, 2024 
513 |a Working Paper 
520 3 |a Solving multiscale diffusion problems is often computationally expensive due to the spatial and temporal discretization challenges arising from high-contrast coefficients. To address this issue, a partially explicit temporal splitting scheme is proposed. By appropriately constructing multiscale spaces, the spatial multiscale property is effectively managed, and it has been demonstrated that the temporal step size is independent of the contrast. To enhance simulation speed, we propose a parallel algorithm for the multiscale flow problem that leverages the partially explicit temporal splitting scheme. The idea is first to evolve the partially explicit system using a coarse time step size, then correct the solution on each coarse time interval with a fine propagator, for which we consider both the sequential solver and all-at-once solver. This procedure is then performed iteratively till convergence. We analyze the stability and convergence of the proposed algorithm. The numerical experiments demonstrate that the proposed algorithm achieves high numerical accuracy for high-contrast problems and converges in a relatively small number of iterations. The number of iterations stays stable as the number of coarse intervals increases, thus significantly improving computational efficiency through parallel processing. 
653 |a Parallel processing 
653 |a Algorithms 
653 |a Solvers 
653 |a Diffusion rate 
653 |a Convergence 
653 |a Splitting 
700 1 |a Yang, Zhengya 
700 1 |a Leung, Wing Tat 
773 0 |t arXiv.org  |g (Dec 22, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3128887721/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.09244