(Re)packing Equal Disks into Rectangle

Guardat en:
Dades bibliogràfiques
Publicat a:Discrete & Computational Geometry vol. 72, no. 4 (Dec 2024), p. 1596
Autor principal: Fomin, Fedor V.
Altres autors: Golovach, Petr A., Inamdar, Tanmay, Saurabh, Saket, Zehavi, Meirav
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3129051311
003 UK-CbPIL
022 |a 0179-5376 
022 |a 1432-0444 
024 7 |a 10.1007/s00454-024-00633-1  |2 doi 
035 |a 3129051311 
045 2 |b d20241201  |b d20241231 
084 |a 65756  |2 nlm 
100 1 |a Fomin, Fedor V.  |u University of Bergen, Bergen, Norway (GRID:grid.7914.b) (ISNI:0000 0004 1936 7443) 
245 1 |a (Re)packing Equal Disks into Rectangle 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a The problem of packing of equal disks (or circles) into a rectangle is a fundamental geometric problem. (By a packing here we mean an arrangement of disks in a rectangle without overlapping.) We consider the following algorithmic generalization of the equal disk packing problem. In this problem, for a given packing of equal disks into a rectangle, the question is whether by changing positions of a small number of disks, we can allocate space for packing more disks. More formally, in the repacking problem, for a given set of n equal disks packed into a rectangle and integers k and h, we ask whether it is possible by changing positions of at most h disks to pack n+k<inline-graphic xlink:href="454_2024_633_Article_IEq1.gif" /> disks. Thus the problem of packing equal disks is the special case of our problem with n=h=0<inline-graphic xlink:href="454_2024_633_Article_IEq2.gif" />. While the computational complexity of packing equal disks into a rectangle remains open, we prove that the repacking problem is NP-hard already for h=0<inline-graphic xlink:href="454_2024_633_Article_IEq3.gif" />. Our main algorithmic contribution is an algorithm that solves the repacking problem in time (h+k)O(h+k)·|I|O(1)<inline-graphic xlink:href="454_2024_633_Article_IEq4.gif" />, where |I| is the input size. That is, the problem is fixed-parameter tractable parameterized by k and h. 
653 |a Algorithms 
653 |a Rectangles 
653 |a Packaging 
653 |a Disks 
700 1 |a Golovach, Petr A.  |u University of Bergen, Bergen, Norway (GRID:grid.7914.b) (ISNI:0000 0004 1936 7443) 
700 1 |a Inamdar, Tanmay  |u Indian Institute of Technology, Jodhpur, Jodhpur, India (GRID:grid.467228.d) (ISNI:0000 0004 1806 4045) 
700 1 |a Saurabh, Saket  |u University of Bergen, Bergen, Norway (GRID:grid.7914.b) (ISNI:0000 0004 1936 7443); Institute of Mathematical Sciences, Chennai, India (GRID:grid.462414.1) (ISNI:0000 0004 0504 909X) 
700 1 |a Zehavi, Meirav  |u Ben-Guiron University, Beer-Sheva, Israel (GRID:grid.462414.1) 
773 0 |t Discrete & Computational Geometry  |g vol. 72, no. 4 (Dec 2024), p. 1596 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3129051311/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3129051311/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch