Towards quantum-centric simulations of extended molecules: sample-based quantum diagonalization enhanced with density matrix embedding theory

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 23, 2024), p. n/a
Autore principale: Shajan, Akhil
Altri autori: Kaliakin, Danil, Mitra, Abhishek, Javier Robledo Moreno, Li, Zhen, Motta, Mario, Johnson, Caleb, Abdullah Ash Saki, Das, Susanta, Sitdikov, Iskandar, Mezzacapo, Antonio, Merz, Kenneth M, Jr
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3129859761
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3129859761 
045 0 |b d20241223 
100 1 |a Shajan, Akhil 
245 1 |a Towards quantum-centric simulations of extended molecules: sample-based quantum diagonalization enhanced with density matrix embedding theory 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Computing ground-state properties of molecules is a promising application for quantum computers operating in concert with classical high-performance computing resources. Quantum embedding methods are a family of algorithms particularly suited to these computational platforms: they combine high-level calculations on active regions of a molecule with low-level calculations on the surrounding environment, thereby avoiding expensive high-level full-molecule calculations and allowing to distribute computational cost across multiple and heterogeneous computing units. Here, we present the first density matrix embedding theory (DMET) simulations performed in combination with the sample-based quantum diagonalization (SQD) method. We employ the DMET-SQD formalism to compute the ground-state energy of a ring of 18 hydrogen atoms, and the relative energies of the chair, half-chair, twist-boat, and boat conformers of cyclohexane. The full-molecule 41- and 89-qubit simulations are decomposed into 27- and 32-qubit active-region simulations, that we carry out on the ibm_cleveland device, obtaining results in agreement with reference classical methods. Our DMET-SQD calculations mark a tangible progress in the size of active regions that can be accurately tackled by near-term quantum computers, and are an early demonstration of the potential for quantum-centric simulations to accurately treat the electronic structure of large molecules, with the ultimate goal of tackling systems such as peptides and proteins. 
653 |a Computing costs 
653 |a Simulation 
653 |a Quantum computing 
653 |a Algorithms 
653 |a Peptides 
653 |a Quantum computers 
653 |a Density 
653 |a Hydrogen atoms 
653 |a Electronic structure 
653 |a Embedding 
653 |a Molecular structure 
653 |a Cyclohexane 
653 |a Qubits (quantum computing) 
700 1 |a Kaliakin, Danil 
700 1 |a Mitra, Abhishek 
700 1 |a Javier Robledo Moreno 
700 1 |a Li, Zhen 
700 1 |a Motta, Mario 
700 1 |a Johnson, Caleb 
700 1 |a Abdullah Ash Saki 
700 1 |a Das, Susanta 
700 1 |a Sitdikov, Iskandar 
700 1 |a Mezzacapo, Antonio 
700 1 |a Merz, Kenneth M, Jr 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3129859761/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.09861