Disease exacerbation by fibroblast inclusion in Duchenne Muscular Dystrophy MYOrganoids reveals limitations of microdystrophin therapeutic efficacy

Guardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Jan 22, 2025)
Autor principal: Palmieri, Laura
Otros Autores: Pili, Louna, Jaber, Abbass, Ai Vu Hong, Marcello, Matteo, Riyad El Khoury, Brochier, Guy, Bigot, Anne, Israeli, David, Isabelle, Richard, Albini, Sonia
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3129861331
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2023.07.26.550063  |2 doi 
035 |a 3129861331 
045 0 |b d20250122 
100 1 |a Palmieri, Laura 
245 1 |a Disease exacerbation by fibroblast inclusion in Duchenne Muscular Dystrophy MYOrganoids reveals limitations of microdystrophin therapeutic efficacy 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 22, 2025 
513 |a Working Paper 
520 3 |a Current gene therapy approaches for Duchenne muscular dystrophy (DMD) using AAV-mediated delivery of microdystrophin (uDys) have shown limited efficacy in patients, contrasting with the favorable outcomes observed in animal models. This discrepancy is partly due to the lack of models that replicate key pathogenic features associated with the severity of the human disease, such as fibrosis and muscle dysfunction. To tackle the translational gap, we develop a human disease model that recapitulates these critical hallmarks of DMD for a more predictive therapeutic investigation. Using a muscle engineering approach, we generate MYOrganoids from iPSC-derived muscle cells co-cultured with fibroblasts that enable functional maturation for muscle force analysis upon contractions. Incorporation of DMD fibroblasts within DMD iPSC-derived muscle cells allows phenotypic exacerbation by unraveling of fibrotic signature and fatiguability through cell-contact-dependent communication. Although uDys gene transfer partially restores muscle resistance, it fails to fully restore membrane stability and reduce profibrotic signaling. These findings highlight the persistence of fibrotic activity post-gene therapy in our human DMD system, an unparalleled aspect in existing DMD models, and provide the opportunity to explore the underlying mechanisms of dysregulated cellular communication to identify anti-fibrotic strategies empowering gene therapy efficacy.Competing Interest StatementThe authors have declared no competing interest.Footnotes* This version of the manuscript has been revised in order to increase readability and scientific clarity 
653 |a Fibroblasts 
653 |a Pluripotency 
653 |a Dystrophin 
653 |a Animal models 
653 |a Structure-function relationships 
653 |a Muscular dystrophy 
653 |a Gene transfer 
653 |a Duchenne's muscular dystrophy 
700 1 |a Pili, Louna 
700 1 |a Jaber, Abbass 
700 1 |a Ai Vu Hong 
700 1 |a Marcello, Matteo 
700 1 |a Riyad El Khoury 
700 1 |a Brochier, Guy 
700 1 |a Bigot, Anne 
700 1 |a Israeli, David 
700 1 |a Isabelle, Richard 
700 1 |a Albini, Sonia 
773 0 |t bioRxiv  |g (Jan 22, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3129861331/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2023.07.26.550063v4