Memory Proxy Maps for Visual Navigation

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 12, 2024), p. n/a
Главный автор: Johnson, Faith
Другие авторы: Cao, Bryan Bo, Ashwin Ashok, Jain, Shubham, Dana, Kristin
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3129864249
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3129864249 
045 0 |b d20241212 
100 1 |a Johnson, Faith 
245 1 |a Memory Proxy Maps for Visual Navigation 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Visual navigation takes inspiration from humans, who navigate in previously unseen environments using vision without detailed environment maps. Inspired by this, we introduce a novel no-RL, no-graph, no-odometry approach to visual navigation using feudal learning to build a three tiered agent. Key to our approach is a memory proxy map (MPM), an intermediate representation of the environment learned in a self-supervised manner by the high-level manager agent that serves as a simplified memory, approximating what the agent has seen. We demonstrate that recording observations in this learned latent space is an effective and efficient memory proxy that can remove the need for graphs and odometry in visual navigation tasks. For the mid-level manager agent, we develop a waypoint network (WayNet) that outputs intermediate subgoals, or waypoints, imitating human waypoint selection during local navigation. For the low-level worker agent, we learn a classifier over a discrete action space that avoids local obstacles and moves the agent towards the WayNet waypoint. The resulting feudal navigation network offers a novel approach with no RL, no graph, no odometry, and no metric map; all while achieving SOTA results on the image goal navigation task. 
653 |a Visual tasks 
653 |a Navigation 
653 |a Memory tasks 
653 |a Waypoints 
653 |a Maps 
653 |a Visual observation 
653 |a Obstacle avoidance 
700 1 |a Cao, Bryan Bo 
700 1 |a Ashwin Ashok 
700 1 |a Jain, Shubham 
700 1 |a Dana, Kristin 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3129864249/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.09893