Vision Eagle Attention: a new lens for advancing image classification

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 9, 2024), p. n/a
Autor principal: Hasan, Mahmudul
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3130501255
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3130501255 
045 0 |b d20241209 
100 1 |a Hasan, Mahmudul 
245 1 |a Vision Eagle Attention: a new lens for advancing image classification 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a In computer vision tasks, the ability to focus on relevant regions within an image is crucial for improving model performance, particularly when key features are small, subtle, or spatially dispersed. Convolutional neural networks (CNNs) typically treat all regions of an image equally, which can lead to inefficient feature extraction. To address this challenge, I have introduced Vision Eagle Attention, a novel attention mechanism that enhances visual feature extraction using convolutional spatial attention. The model applies convolution to capture local spatial features and generates an attention map that selectively emphasizes the most informative regions of the image. This attention mechanism enables the model to focus on discriminative features while suppressing irrelevant background information. I have integrated Vision Eagle Attention into a lightweight ResNet-18 architecture, demonstrating that this combination results in an efficient and powerful model. I have evaluated the performance of the proposed model on three widely used benchmark datasets: FashionMNIST, Intel Image Classification, and OracleMNIST, with a primary focus on image classification. Experimental results show that the proposed approach improves classification accuracy. Additionally, this method has the potential to be extended to other vision tasks, such as object detection, segmentation, and visual tracking, offering a computationally efficient solution for a wide range of vision-based applications. Code is available at: https://github.com/MahmudulHasan11085/Vision-Eagle-Attention.git 
653 |a Feature extraction 
653 |a Attention 
653 |a Image classification 
653 |a Optical tracking 
653 |a Visual tasks 
653 |a Visual discrimination 
653 |a Computer vision 
653 |a Performance evaluation 
653 |a Object recognition 
653 |a Image segmentation 
653 |a Artificial neural networks 
653 |a Classification 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3130501255/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.10564