High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks

Gardado en:
Detalles Bibliográficos
Publicado en:Programming and Computer Software vol. 50, no. 6 (Dec 2024), p. 417
Autor Principal: Lapina, M. A.
Outros autores: Shiriaev, E. M., Babenko, M. G., Istamov, I.
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3130548032
003 UK-CbPIL
022 |a 0361-7688 
022 |a 1608-3261 
024 7 |a 10.1134/S0361768824700282  |2 doi 
035 |a 3130548032 
045 2 |b d20241201  |b d20241231 
100 1 |a Lapina, M. A.  |u North Caucasian Center for Mathematical Research, North Caucasus Federal University, Stavropol, Russia (GRID:grid.440697.8) (ISNI:0000 0004 0646 0593) 
245 1 |a High-Speed Convolution Core Architecture for Privacy-Preserving Neural Networks 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Due to legal restrictions or restrictions related to companies' internal information policies, businesses often do not trust sensitive information to public cloud providers. One of the mechanisms to ensure the security of sensitive data in clouds is homomorphic encryption. Privacy-preserving neural networks are used to design solutions that utilize neural networks under these conditions. They exploit the homomorphic encryption mechanism, thus enabling the security of commercial information in the cloud. The main deterrent to the use of privacy-preserving neural networks is the large computational and spatial complexity of the scalar multiplication algorithm, which is the basic algorithm for computing mathematical convolution. In this paper, we propose a scalar multiplication algorithm that reduces the spatial complexity from quadratic to linear, and reduces the computation time of scalar multiplication by a factor of 1.38. 
653 |a Encryption 
653 |a Big Data 
653 |a Neurons 
653 |a Personal information 
653 |a Neural networks 
653 |a Security 
653 |a Artificial intelligence 
653 |a Convolution 
653 |a Privacy 
653 |a Algorithms 
653 |a Data encryption 
653 |a Complexity 
653 |a Cloud computing 
653 |a Efficiency 
700 1 |a Shiriaev, E. M.  |u North Caucasian Center for Mathematical Research, North Caucasus Federal University, Stavropol, Russia (GRID:grid.440697.8) (ISNI:0000 0004 0646 0593) 
700 1 |a Babenko, M. G.  |u North Caucasian Center for Mathematical Research, North Caucasus Federal University, Stavropol, Russia (GRID:grid.440697.8) (ISNI:0000 0004 0646 0593) 
700 1 |a Istamov, I.  |u Samarkand State University Named after Sharof Rashidov, Samarkand, Uzbekistan (GRID:grid.77443.33) (ISNI:0000 0001 0942 5708) 
773 0 |t Programming and Computer Software  |g vol. 50, no. 6 (Dec 2024), p. 417 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3130548032/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3130548032/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3130548032/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch