Development of an offshore ground motion prediction equation for peak ground acceleration considering path effects based on S-net data

Збережено в:
Бібліографічні деталі
Опубліковано в::Earth, Planets and Space (Online) vol. 76, no. 1 (Dec 2024), p. 146
Автор: Nakanishi, Ryo
Інші автори: Takemura, Shunsuke
Опубліковано:
Springer Nature B.V.
Предмети:
Онлайн доступ:Citation/Abstract
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3130580825
003 UK-CbPIL
022 |a 1880-5981 
024 7 |a 10.1186/s40623-024-02078-5  |2 doi 
035 |a 3130580825 
045 2 |b d20241201  |b d20241231 
084 |a 242929  |2 nlm 
100 1 |a Nakanishi, Ryo  |u Kyoto University, Graduate School of Science, Kyoto, Japan (GRID:grid.258799.8) (ISNI:0000 0004 0372 2033); Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan (GRID:grid.54432.34) (ISNI:0000 0001 0860 6072) 
245 1 |a Development of an offshore ground motion prediction equation for peak ground acceleration considering path effects based on S-net data 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Ground motion prediction equations (GMPEs) in offshore regions are important not only for earthquake early warning systems and strong motion prediction but also for evaluating the durability of subsea structures and tsunami risks associated with seafloor slope failures. Since soil conditions and propagation paths differ between onshore and offshore areas, it is desirable to develop a GMPE specific to the seafloor. Previous GMPE models have some problems, such as being influenced by buried observation equipment and path effects. In this study, to predict the distribution of seafloor seismic acceleration, we developed a new GMPE regressed on the peak ground acceleration (PGA) data of S-net using minimum necessary seismic parameters as explanatory variables. Residual analysis using the conventional GMPE emphasized the path effects through the offshore area, which were corrected by the depth up to the plate boundary. The new model successfully predicted PGA with smaller errors compared to conventional onshore and offshore GMPEs. The residuals between the observed and predicted PGAs were used to examine the factors responsible for the effects of the S-net site conditions. The new GMPE can predict PGAs within 300 km of the epicenter from the moment magnitude (Mw 5.4–7.4), focal depth, earthquake type, and source distance. In this model, the distance attenuation coefficient is smaller than in conventional models, and consequently, the PGAs along the trench axis that are amplified due to path effects can be reproduced. This means that PGAs will be unexpectedly larger than those estimated by conventional GMPEs even far from the hypocenter. Our model improves the accuracy of PGA prediction and avoids underestimation in assessing seafloor slope failure and earthquake resistance near the trench. 
653 |a Earthquakes 
653 |a Ocean floor 
653 |a Warning systems 
653 |a Seismic activity 
653 |a Seismic properties 
653 |a Early warning systems 
653 |a Earthquake resistance 
653 |a Soil conditions 
653 |a Offshore structures 
653 |a Emergency communications systems 
653 |a Earthquake prediction 
653 |a Attenuation coefficients 
653 |a Mathematical models 
653 |a Buried structures 
653 |a Ground motion 
653 |a Emergency warning programs 
653 |a Environmental 
700 1 |a Takemura, Shunsuke  |u The University of Tokyo, Earthquake Research Institute, Tokyo, Japan (GRID:grid.26999.3d) (ISNI:0000 0001 2169 1048) 
773 0 |t Earth, Planets and Space (Online)  |g vol. 76, no. 1 (Dec 2024), p. 146 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3130580825/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3130580825/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch