Design and Development of a Robotic Platform at Scale for Implementing Artificial Intelligence and Computer Vision Algorithms in Autonomous Vehicles

Guardado en:
Detalles Bibliográficos
Publicado en:Florida Scientist vol. 87, no. 3/4 (2024), p. 123
Autor principal: Tyson, Shaquan
Otros Autores: Kalenga, Aldridge, Awandu, Chibundu, Lamichhane, Santosh, Mwase, Buchizya, Brown, Tianna, Calderon, Juan
Publicado:
Florida Academy of Sciences, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3131537004
003 UK-CbPIL
022 |a 0098-4590 
035 |a 3131537004 
045 2 |b d20240901  |b d20241231 
084 |a 127410  |2 nlm 
100 1 |a Tyson, Shaquan 
245 1 |a Design and Development of a Robotic Platform at Scale for Implementing Artificial Intelligence and Computer Vision Algorithms in Autonomous Vehicles 
260 |b Florida Academy of Sciences, Inc.  |c 2024 
513 |a Feature 
520 3 |a The automotive industry has shifted towards electric vehicles in the past decade. Electric cars are beginning to dominate the market and are expected to become the global standard for mobility. This transition from gasoline vehicles to electric ones has facilitated the approach and development of autonomous driving systems. This project focuses on designing and developing a 10:1 scale electric vehicle platform, integrating multiple sensors and computer systems. The project has three primary objectives: (1) the development of an autonomous vehicle platform, (2) the exploration of artificial intelligence and computer vision algorithms, and (3) providing university instruction in autonomous vehicles (AV). The platform replicates AV features by incorporating electric motors, batteries, and essential sensors for AV, such as RGB cameras, LiDARs, depth perception cameras, and radar. An onboard computing system enables the evaluation of advanced artificial intelligence and computer vision algorithms in a controlled environment. The project involves the development and testing of algorithms for autonomous navigation, sensory data processing, and real-time decision-making. Simultaneously, the project aims to impact education by creating innovative teaching materials. The scaled platform will serve as an educational resource for undergraduate students interested in autonomous vehicles, artificial intelligence, and computer vision. This interdisciplinary approach aims to prepare the next generation of professionals in the emerging field of autonomous electric vehicles 
653 |a Automotive fuels 
653 |a Sensors 
653 |a Computers 
653 |a Gasoline 
653 |a Navigation 
653 |a Electric motors 
653 |a Computer vision 
653 |a Automobile industry 
653 |a Space perception 
653 |a Colleges & universities 
653 |a Electric vehicles 
653 |a Cameras 
653 |a Onboard data processing 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Batteries 
653 |a Information processing 
653 |a Industrial development 
653 |a Design standards 
653 |a Real time 
653 |a Vehicles 
653 |a Decision making 
653 |a Automobiles 
653 |a Data processing 
653 |a Depth perception 
653 |a Data analysis 
653 |a Teaching materials 
653 |a Educational resources 
653 |a Radar 
653 |a Education 
653 |a Autonomous vehicles 
653 |a Autonomous navigation 
653 |a Sensory integration 
653 |a Economic 
700 1 |a Kalenga, Aldridge 
700 1 |a Awandu, Chibundu 
700 1 |a Lamichhane, Santosh 
700 1 |a Mwase, Buchizya 
700 1 |a Brown, Tianna 
700 1 |a Calderon, Juan 
773 0 |t Florida Scientist  |g vol. 87, no. 3/4 (2024), p. 123 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131537004/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3131537004/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3131537004/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch