Deep learning from videography as a tool for measuring E. coli infection in poultry

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Jan 21, 2025)
Autor principal: Scheidwasser, Neil
Altres autors: Louise Ladefoged Poulsen, Prince Ravi Leow, Mark Poulsen Khurana, Iglesias-Carrasco, Maider, Laydon, Daniel Joseph, Donnelly, Christl Ann, Anders Miki Bojesen, Bhatt, Samir, Duchene, David A
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3131626246
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2024.11.20.624075  |2 doi 
035 |a 3131626246 
045 0 |b d20250121 
100 1 |a Scheidwasser, Neil 
245 1 |a Deep learning from videography as a tool for measuring E. coli infection in poultry 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 21, 2025 
513 |a Working Paper 
520 3 |a Poultry farming is threatened by regular outbreaks of Escherichia coli (E. coli) that lead to significant economic losses and public health risks. However, traditional surveillance methods often lack sensitivity and scalability. Early detection of infected poultry using minimally invasive procedures is thus essential for preventing epidemics. To that end, we leverage recent advancements in computer vision, employing deep learning-based tracking to detect behavioural changes associated with E. coli infection in a case-control trial comprising two groups of 20 broiler chickens: (1) a healthy control group and (2) a group infected with a pathogenic E. coli field strain from the poultry industry. More specifically, kinematic features derived from deep learning-based tracking data revealed markedly reduced activity in the challenged group compared to the negative control. These findings were validated by lower mean optical flow in the infected flock, suggesting reduced movement and activity, and post-mortem physiological markers of inflammation which confirmed the severity of infection in the challenged group. Overall, this study demonstrates that deep learning-based tracking offers a promising solution for real-time monitoring and early infection detection in poultry farming, with the potential to help reduce economic losses and mitigate public health risks associated with infectious disease outbreaks in poultry.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Author affiliations updated; added new validation based on optical flow; minor changes throughout the manuscript* https://github.com/Neclow/dlc4ecoli 
653 |a Infections 
653 |a Amyloid 
653 |a Food sources 
653 |a Public health 
653 |a Deep learning 
653 |a E coli 
653 |a Vaccination 
653 |a Poultry 
653 |a Poultry farming 
653 |a Epidemics 
653 |a Animal welfare 
653 |a Escherichia coli 
700 1 |a Louise Ladefoged Poulsen 
700 1 |a Prince Ravi Leow 
700 1 |a Mark Poulsen Khurana 
700 1 |a Iglesias-Carrasco, Maider 
700 1 |a Laydon, Daniel Joseph 
700 1 |a Donnelly, Christl Ann 
700 1 |a Anders Miki Bojesen 
700 1 |a Bhatt, Samir 
700 1 |a Duchene, David A 
773 0 |t bioRxiv  |g (Jan 21, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131626246/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3131626246/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2024.11.20.624075v2