Tellurene Polymorphs: A New Frontier for Solar Harvesting with Strong Exciton Anisotropy and High Optical Absorbance

Guardado en:
Detalles Bibliográficos
Publicado en:Advanced Energy Materials vol. 14, no. 44 (Nov 2024)
Autor principal: Grillo, Simone
Otros Autores: Postorino, Sara, Palummo, Maurizia, Pulci, Olivia
Publicado:
Wiley Subscription Services, Inc.
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3131680203
003 UK-CbPIL
022 |a 1614-6832 
022 |a 1614-6840 
024 7 |a 10.1002/aenm.202400674  |2 doi 
035 |a 3131680203 
045 2 |b d20241101  |b d20241130 
084 |a 161728  |2 nlm 
100 1 |a Grillo, Simone  |u Department of Physics, University of Rome “Tor Vergata” and INFN, Rome, Italy 
245 1 |a Tellurene Polymorphs: A New Frontier for Solar Harvesting with Strong Exciton Anisotropy and High Optical Absorbance 
260 |b Wiley Subscription Services, Inc.  |c Nov 2024 
513 |a Journal Article 
520 3 |a By using ab initio simulations based on density functional theory and many‐body perturbation theory, a comprehensive analysis of the distinct optical signatures of various tellurene polymorphs and their associated unique anisotropic excitonic characteristics is presented. Despite the atomic thickness of these materials, these findings reveal that their optical absorbance reaches as high as 50% in the near‐infrared and visible range. This investigation highlights the exceptional potential of these 2D semiconducting materials in the development of ultra‐thin and flexible homo‐ and hetero‐junctions for solar light harvesting, achieving photoconversion efficiencies up to 19%, a performance level comparable to current silicon technologies. 
653 |a Anisotropy 
653 |a Infrared analysis 
653 |a Infrared signatures 
653 |a Quantum efficiency 
653 |a Density functional theory 
653 |a Near infrared radiation 
653 |a Perturbation theory 
653 |a Absorbance 
653 |a Two dimensional analysis 
653 |a Excitons 
700 1 |a Postorino, Sara  |u Department of Physics, University of Rome “Tor Vergata” and INFN, Rome, Italy 
700 1 |a Palummo, Maurizia  |u Department of Physics, University of Rome “Tor Vergata” and INFN, Rome, Italy 
700 1 |a Pulci, Olivia  |u Department of Physics, University of Rome “Tor Vergata” and INFN, Rome, Italy 
773 0 |t Advanced Energy Materials  |g vol. 14, no. 44 (Nov 2024) 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131680203/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch