Human-in-the-loop optimization of wearable device parameters using an EMG-based objective function

Saved in:
Bibliographic Details
Published in:Wearable Technologies vol. 5 (Nov 2024)
Main Author: Díaz, María Alejandra
Other Authors: De Bock, Sander, Beckerle, Philipp, Babič, Jan, Verstraten, Tom, De Pauw, Kevin
Published:
Cambridge University Press
Subjects:
Online Access:Citation/Abstract
Full Text
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3131715193
003 UK-CbPIL
022 |a 2631-7176 
024 7 |a 10.1017/wtc.2024.9  |2 doi 
035 |a 3131715193 
045 2 |b d20241101  |b d20241130 
100 1 |a Díaz, María Alejandra  |u BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, 1050, Belgium 
245 1 |a Human-in-the-loop optimization of wearable device parameters using an EMG-based objective function 
260 |b Cambridge University Press  |c Nov 2024 
513 |a Journal Article 
520 3 |a Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals’ natural energetic expenditure during walking. The objective function combines information from electromyography (EMG) variables such as intensity and muscle synergies. First, we demonstrate the similarity of the proposed objective function, calculated offline, to the EC during walking. Second, we minimize and validate the EMG-based objective function using an online Bayesian optimization algorithm. The walking step frequency is chosen as the parameter to optimize in both offline and online approaches in order to simplify experiments and facilitate comparisons with related research. Compared to existing studies that use EC as the objective function, results demonstrated that the optimization of the presented objective function reduced the number of iterations and, when compared with gradient descent optimization strategies, also reduced convergence time. Moreover, the algorithm effectively converges toward an optimal step frequency near the user’s preferred frequency, positively influencing EC reduction. The good correlation between the estimated objective function and measured EC highlights its consistency and reliability. Thus, the proposed objective function could potentially optimize lower limb exoskeleton assistance and improve user performance and human–robot interaction without the need for challenging respiratory gas measurements. 
653 |a Ankle 
653 |a Physiology 
653 |a Convergence 
653 |a Walking 
653 |a Robot dynamics 
653 |a Musculoskeletal system 
653 |a Electromyography 
653 |a Optimization 
653 |a Human performance 
653 |a Robots 
653 |a Wearable technology 
653 |a Algorithms 
653 |a Metabolism 
653 |a Gas analysis 
653 |a Muscle function 
653 |a Exoskeletons 
653 |a Optimization algorithms 
653 |a Parameters 
653 |a Energy consumption 
653 |a Biomechanics 
653 |a Robot control 
653 |a Robotics 
700 1 |a De Bock, Sander  |u Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, 1050, Belgium 
700 1 |a Beckerle, Philipp  |u Institute of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91052, Germany; Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91052, Germany 
700 1 |a Babič, Jan  |u Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, 1000, Slovenia; Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, 1000, Slovenia 
700 1 |a Verstraten, Tom  |u BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium; Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel and Flanders Make, Brussels, 1050, Belgium 
700 1 |a De Pauw, Kevin  |u BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium; Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, 1050, Belgium 
773 0 |t Wearable Technologies  |g vol. 5 (Nov 2024) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131715193/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3131715193/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3131715193/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch