Energy Optimization Management Scheme for Manufacturing Systems Based on BMAPPO: A Deep Reinforcement Learning Approach

Sparad:
Bibliografiska uppgifter
I publikationen:International Journal of Advanced Computer Science and Applications vol. 15, no. 10 (2024)
Huvudupphov: PDF
Utgiven:
Science and Information (SAI) Organization Limited
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3131836853
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2024.0151077  |2 doi 
035 |a 3131836853 
045 2 |b d20240101  |b d20241231 
100 1 |a PDF 
245 1 |a Energy Optimization Management Scheme for Manufacturing Systems Based on BMAPPO: A Deep Reinforcement Learning Approach 
260 |b Science and Information (SAI) Organization Limited  |c 2024 
513 |a Journal Article 
520 3 |a To address the depletion of traditional energy sources and the increasingly severe environmental pollution, countries around the world have accelerated the deployment of renewable energy generation equipment. Energy optimization management for microgrids can address the randomness of factors such as renewable energy generation and load, ensuring the safe and stable operation of the system while achieving objectives such as cost minimization. Therefore, this paper conducts an in-depth study of energy optimization management schemes for microgrids and designs a multi-microgrid energy optimization management model and algorithm based on deep reinforcement learning. For the joint optimization problem among multiple microgrids with power flow between them, a two-layer energy optimization management scheme based on the multi-agent proximal policy optimization (PPO) algorithm and optimal power flow (BMAPPO) is proposed. This scheme is divided into two layers: first, the lower layer uses the multi-agent proximal policy optimization algorithm to determine the output of various controllable power devices in each microgrid; then, based on the lower layer's optimization results, the upper layer uses a second-order cone relaxation optimal power flow model to solve the optimal power flow between multiple microgrids, achieving power scheduling among them; finally, the total cost of the upper and lower layers is calculated to update the network parameters. Experimental results show that compared with other schemes, the proposed scheme achieves multi-microgrid energy optimization management at the lowest cost while ensuring online execution speed. 
653 |a Environmental management 
653 |a Distributed generation 
653 |a Power flow 
653 |a Renewable resources 
653 |a Optimization 
653 |a Pollution sources 
653 |a Algorithms 
653 |a Controllability 
653 |a Multiagent systems 
653 |a Renewable energy 
653 |a Deep learning 
653 |a Machine learning 
653 |a Computer science 
653 |a Emissions 
653 |a Electricity distribution 
653 |a Optimization techniques 
653 |a Prices 
653 |a Energy storage 
653 |a Mathematical programming 
653 |a Control algorithms 
653 |a Electricity 
653 |a Alternative energy 
653 |a Genetic algorithms 
653 |a Cost reduction 
653 |a Energy management 
653 |a Linear programming 
653 |a Demand side management 
653 |a Optimization algorithms 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 15, no. 10 (2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131836853/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3131836853/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch