GraphComm: A Graph-based Deep Learning Method to Predict Cell-Cell Communication in single-cell RNAseq data

Guardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Dec 21, 2024)
Autor principal: So, Emily
Otros Autores: Sikander Hayat, Nair, Sisira Kadambat, Wang, Bo, Haibe-Kains, Benjamin
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3131948446
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2023.04.26.538432  |2 doi 
035 |a 3131948446 
045 0 |b d20241221 
100 1 |a So, Emily 
245 1 |a GraphComm: A Graph-based Deep Learning Method to Predict Cell-Cell Communication in single-cell RNAseq data 
260 |b Cold Spring Harbor Laboratory Press  |c Dec 21, 2024 
513 |a Working Paper 
520 3 |a Interactions between cells coordinate various functions across cell-types in health and disease states. Novel single-cell techniques enable deep investigation of cellular crosstalk at single-cell resolution. Cell-cell communication (CCC) is mediated by underlying gene-gene networks, however most current methods are unable to account for complex interactions within the cell as well as incorporate the effect of pathway and protein complexes on interactions. This results in the inability to infer overarching signalling patterns within a dataset as well as limit the ability to successfully explore other data types such as spatial cell dimension. Therefore, to represent transcriptomic data as intricate networks, complementing gene expression with information from cells to ligands and receptors for relevant cell-cell communication inference, we present GraphComm - a new graph-based deep learning method for predicting cell-cell communication in single-cell RNAseq datasets. GraphComm improves CCC inference by capturing detailed information such as cell location and intracellular signalling patterns from a database of more than 30,000 protein interaction pairs. With this framework, GraphComm is able to predict biologically relevant results in datasets previously validated for CCC, datasets that have undergone chemical or genetic perturbations and datasets with spatial cell information.Competing Interest StatementBHK is a shareholder and paid consultant for Code Ocean Inc. ES is paid consultant for Code Ocean Inc.Footnotes* Figure 4F replaced with new results; Extended Data Figure 1 replaced with new results. 
653 |a Gene expression 
653 |a Cell interactions 
653 |a Deep learning 
653 |a Datasets 
653 |a Transcriptomics 
653 |a Communication 
653 |a Signal transduction 
653 |a Intracellular signalling 
700 1 |a Sikander Hayat 
700 1 |a Nair, Sisira Kadambat 
700 1 |a Wang, Bo 
700 1 |a Haibe-Kains, Benjamin 
773 0 |t bioRxiv  |g (Dec 21, 2024) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131948446/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2023.04.26.538432v5