Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Nov 20, 2024), p. n/a
Autore principale: Mashaekh Tausif Ehsan
Altri autori: Saifuddin Zafar, Sarker, Apurba, Sourav Das Suvro, Mohammad Nasim Hasan
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3131951388
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3131951388 
045 0 |b d20241120 
100 1 |a Mashaekh Tausif Ehsan 
245 1 |a Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys 
260 |b Cornell University Library, arXiv.org  |c Nov 20, 2024 
513 |a Working Paper 
520 3 |a Machine learning (ML) methods have drawn significant interest in material design and discovery. Graph neural networks (GNNs), in particular, have demonstrated strong potential for predicting material properties. The present study proposes a graph-based representation for modeling medium-entropy alloys (MEAs). Hybrid Monte-Carlo molecular dynamics (MC/MD) simulations are employed to achieve thermally stable structures across various annealing temperatures in an MEA. These simulations generate dump files and potential energy labels, which are used to construct graph representations of the atomic configurations. Edges are created between each atom and its 12 nearest neighbors without incorporating explicit edge features. These graphs then serve as input for a Graph Convolutional Neural Network (GCNN) based ML model to predict the system's potential energy. The GCNN architecture effectively captures the local environment and chemical ordering within the MEA structure. The GCNN-based ML model demonstrates strong performance in predicting potential energy at different steps, showing satisfactory results on both the training data and unseen configurations. Our approach presents a graph-based modeling framework for MEAs and high-entropy alloys (HEAs), which effectively captures the local chemical order (LCO) within the alloy structure. This allows us to predict key material properties influenced by LCO in both MEAs and HEAs, providing deeper insights into how atomic-scale arrangements affect the properties of these alloys. 
653 |a Simulation 
653 |a Medium entropy alloys 
653 |a Configuration management 
653 |a Thermal stability 
653 |a Drawing 
653 |a Potential energy 
653 |a Material properties 
653 |a Atomic structure 
653 |a Modelling 
653 |a Graph theory 
653 |a Graph neural networks 
653 |a Artificial neural networks 
653 |a High entropy alloys 
653 |a Monte Carlo simulation 
653 |a Graph representations 
653 |a Neural networks 
653 |a Molecular dynamics 
653 |a Machine learning 
653 |a Graphical representations 
653 |a Entropy 
700 1 |a Saifuddin Zafar 
700 1 |a Sarker, Apurba 
700 1 |a Sourav Das Suvro 
700 1 |a Mohammad Nasim Hasan 
773 0 |t arXiv.org  |g (Nov 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3131951388/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2411.13670