The Use of Machine Learning to Assess the Impact of the Ozonation Process on Selected Mechanical Properties of Japanese Quince Fruits

Na minha lista:
Detalhes bibliográficos
Publicado no:Agriculture vol. 14, no. 11 (2024), p. 1995
Autor principal: Gorzelany, Józef
Outros Autores: Kuźniar, Piotr, Zardzewiały, Miłosz, Pentoś, Katarzyna, Murawski, Tadeusz, Wojciechowski, Wiesław, Kurek, Jarosław
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3132823327
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture14111995  |2 doi 
035 |a 3132823327 
045 2 |b d20240101  |b d20241231 
084 |a 231331  |2 nlm 
100 1 |a Gorzelany, Józef  |u Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; <email>jgorzelany@ur.edu.pl</email> (J.G.); <email>pkuzniar@ur.edu.pl</email> (P.K.); <email>mzardzewialy@ur.edu.pl</email> (M.Z.) 
245 1 |a The Use of Machine Learning to Assess the Impact of the Ozonation Process on Selected Mechanical Properties of Japanese Quince Fruits 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a In this study, selected mechanical properties of fruits of six varieties of Japanese quince (Chaenomeles japonica) were investigated. The influence of their storage time and the applied ozone at a concentration of 10 ppm for 15 and 30 min on water content, skin and flesh puncture force, deformation to puncture and puncture energy was determined. After 60 days of storage, the fruits of the tested varieties showed a decrease in the average water content from 97.94% to 94.39%. No influence of the ozonation process on the change in water content in the fruits was noted. The tests showed a significant influence of ozonation and storage time on the increase in the punch puncture force of the skin and flesh, deformation and puncture energy of the fruits. In order to establish the relationship between storage conditions for various varieties and selected mechanical parameters, a novel machine learning method was employed. The best model accuracy was achieved for energy, with a MAPE of 10% and a coefficient of correlation (R) of 0.92 for the test data set. The best metamodels for force and deformation produced slightly higher MAPE (12% and 17%, respectively) and R of 0.72 and 0.88. 
651 4 |a Poland 
653 |a Mechanical properties 
653 |a Ozonation 
653 |a Gas detectors 
653 |a Deformation 
653 |a Fruits 
653 |a Computer simulation 
653 |a Machine learning 
653 |a Moisture content 
653 |a Skin tests 
653 |a Learning algorithms 
653 |a Water content 
653 |a Statistical analysis 
653 |a Raw materials 
653 |a Storage conditions 
653 |a Support vector machines 
653 |a Variance analysis 
653 |a Metamodels 
653 |a Environmental 
700 1 |a Kuźniar, Piotr  |u Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; <email>jgorzelany@ur.edu.pl</email> (J.G.); <email>pkuzniar@ur.edu.pl</email> (P.K.); <email>mzardzewialy@ur.edu.pl</email> (M.Z.) 
700 1 |a Zardzewiały, Miłosz  |u Department of Food and Agriculture Production Engineering, University of Rzeszow, 4 Zelwerowicza Street, 35-601 Rzeszów, Poland; <email>jgorzelany@ur.edu.pl</email> (J.G.); <email>pkuzniar@ur.edu.pl</email> (P.K.); <email>mzardzewialy@ur.edu.pl</email> (M.Z.) 
700 1 |a Pentoś, Katarzyna  |u Institute of Agricultural Engineering, Wroclaw University of Environmental and Life Sciences, 37b Chelmonskiego Street, 51-630 Wroclaw, Poland 
700 1 |a Murawski, Tadeusz  |u Monika Murawska Farm, Nowa Prawda 10, 21-450 Stoczek Łukowski, Poland 
700 1 |a Wojciechowski, Wiesław  |u Institute of Agroecology and Plant Production, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 24A, 50-363 Wroclaw, Poland; <email>wieslaw.wojciechowski@upwr.edu.pl</email> 
700 1 |a Kurek, Jarosław  |u Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; <email>jaroslaw_kurek@sggw.edu.pl</email> 
773 0 |t Agriculture  |g vol. 14, no. 11 (2024), p. 1995 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3132823327/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3132823327/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3132823327/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch